MPC模型预测控制设计过程及原理(待完善)

本文详细介绍了MPC(模型预测控制)的设计过程,包括建立运动学/动力学方程、非线性模型到线性模型的转换、模型离散化、预测、代价函数的构建和优化,以及如何计算系统的输入量。强调了模型假设在实际应用中的重要性和离散化方法的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近要做MPC的项目,由于之前没全面了解过。所以参考了一些学习资源,在这里总结记录下

MPC设计步骤

一 、运动学/动力学方程的建立

根据所要控制的量,建立相关等式,最终格式为
x ˙ = f ( x , u , t ) \dot{x}=f(x,u,t) x˙=f(x,u,t)
其中 x = [ x 1 , x 2 , . . . , x n ] T x=[x_1,x_2,...,x_n]^T x=[x1,x2,...,xn]T为要控制的n个变量

一些讨论:
1、其中各被控量的式子是独立的,且理论上运动学和动力学可以同时存在,
那么,在这种情况下,式子之间的耦合一般很小,即一个输入控制一个状态
比如现在有两个被控量,建立如下式子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值