​Nat Med|龙尔平/陈庆宇团队合作研发“小世界增强”落地级医学大模型SSPEC并推向临床试验...

 以大模型为代表的生成式人工智能,拥有强大的知识编码、文本理解、推理能力,迅速成为数字化和智能化的新型技术基座,有望推动新一轮的医学人工智能革命,对科学和社会产生深远的影响。现有医学大模型处于快速变革和更新迭代的关键时期,面对场景特异知识缺乏、生成内容安全性不足等挑战。医学大模型的前瞻性临床试验和真正落地,更是被誉为“皇冠上的明珠”,是领域内亟待攻克的重要问题。因此,如何研发关键性技术破解落地难题,对于推动医学大模型领域的发展与转化应用,具有重要科学与社会意义。

69e6a3864a78a19d927bdccde55f41dc.png

2024年7月15日,中国医学科学院基础医学研究所龙尔平团队与耶鲁大学陈庆宇合作,在Nature Medicine上发表了题为Outpatient reception via collaboration between nurses and a large language model: a randomized controlled trial的原创性研究论文Original Article。不同于主流的通用大模型,本研究将整体医疗场景拆分为特定的“小世界”,建立了全景数据采集-知识精炼-算法增强的“小世界增强”SSPEC技术框架,成功研发了兼具高专业度和共情支持的导诊大模型;通过预警低质量的生成内容和必要修正,解决了大模型的幻觉难题,成功推向临床试验,获得最高级别的循证医学支持证据。

ef850fd811a7845ffc3944db2f792f1e.jpeg

图1. SSPEC数据采集、设计、评估及验证的总流程

成立真实医学对话医疗联盟,建立战略级医学大模型数据资源池

为了采集原始的医患对话记录,本研究成立了“真实医学对话语料联盟”,建立语音采集-自动文字转化-人工校对的标准化流程;SSPEC大模型的构建,以2个中心10个场景全方位采集的35418例真实导诊对话为基础,以提取对话信息形成的知识库作为训练数据,在基座模型上进行微调和提示调优,使导诊大模型能够解决场景中出现的各种特定问题。

截止2024年6月,团队已在5个中心24个不同医学场景,收集整理了超过120万例真实医患对话。“真实医学对话语料联盟”展示了医患沟通中难预测、低效率等特点,也为应用级的大模型研发搭建了战略级的数据资源壁垒。

研发知识对齐预警系统,直面解决大模型幻觉难题

大模型往往会一本正经地胡说八道,这类现象被称为“幻觉”,普遍存在且难以察觉/纠正。为确保模型的安全性、解决幻觉难题,研究团队以场景知识为基准,研发了知识对齐的多通道安全预警系统,运用增强检索、风险词库等多项技术,对生成内容进行评估和必要修正。    

feb3945f1180cb6da28d4905e8a9fcef.png

图2. 知识对齐的多通道安全预警系统

前瞻性随机对照试验,获得最高级别的循证医学支持证据

医学大模型的前瞻性临床试验和真正落地,被誉为“皇冠上的明珠”,是领域内亟待攻克的重要问题。本研究发现,SSPEC在内部测试中能够在更少的对话回合内解决患者的疑问,性能上全面优于现有主流大模型,同时在共情支持得分上显著优于人类导诊(4.12±0.86 vs 3.39±1.21, P < 0.001)。基于此,团队率先将SSPEC推向临床,在2164人的前瞻性随机对照试验中,相对于人类专家,SSPEC在事实性、安全性、共情能力均展现出明显优势,在真实应用场景中,降低了11.2%的重复沟通和5.4%的医患冲突比例。

4a7493307facbba885a96aec249bff03.png

图3. 内部测试中SSPEC与人类导诊的回复质量对比    

作为医疗健康的新质生产力方案,应用前景广阔

提高全要素生产率,实现医疗健康行业的增速换挡,是全球整体社会发展的核心诉求之一。SSPEC技术不依赖特定的基座大模型,通过特定场景的垂直领域增强,取得了最高级别的循证医学支持性证据,将作为医学大模型的示范性落地应用,为推进卫生健康现代化提供新质生产力方案。研究团队表示,SSPEC技术不仅能够应用于导诊工作,未来能够拓展于患者健康教育、操作前谈话等更多的复杂临床场景。

龙尔平研究员(中国医学科学院)和陈庆宇助理教授(耶鲁大学)为本研究通讯作者。美国国立卫生研究院、武汉大学人民医院、南方科技大学盐田医院的合作者参与本研究,作出重要贡献。

原文链接:https://www.nature.com/articles/s41591-024-03148-7    

高颜值免费 SCI 在线绘图(点击图片直达)

fed040114cf1f2f3f5839650c1c859a3.png

最全植物基因组数据库IMP (点击图片直达)

21c73c1cdd771587a7bc7156dc6c0523.png

往期精品(点击图片直达文字对应教程)

62eabb6da385509fa937041daa7990bf.jpeg

c890d7680148017dfe9897a695472421.jpeg

52553021a8060999ec497ef8da2f5e1c.jpeg

540d54c78e64fbabe74ea334d2d85924.jpeg

47e4d7096cf05505c68acc021032461e.jpeg

bf0fb62151a113e0420d6960bd1154e5.jpeg

e694a5071f97d715c0c9c15ea13cac39.jpeg

f410aa068a1c720b539e058e1239c0e3.jpeg

f5b3b607123bade1ba312a2c7af7850c.jpeg

49a1406936e7c0d57dbf23faad41a05d.jpeg

80666a3dfd039335e91bd327e0d4064e.jpeg

c64cf10180b5c1aa7140dfee224bf304.jpeg

e1eff4424062bf478d8a9e12d51e6032.png

17b046385db9e24e2cd856dc7486b37f.png

34abe5715faeabf5921437ce1665cf2d.png

383501f586d2248b57a5ec90b2969722.png

8d3bd51392fce81c06661a957c1dafe2.jpeg

9e2eee56fe7a575fa275dd6f3264d56d.jpeg

ec6f58c368e8ae37a3c53cabc95c68e1.jpeg

4b05e9ef99332afb36c49308419bee7e.jpeg

48006208394a2f8d93faa7626b2c8241.png

ece4392a0eb34379fa944674366900b2.png

267f1f5fde6d3513659f569cfbe15ded.jpeg

702f43b8aaa28a3c239ad65cf0aece04.png

50d3ae1f75e994210b343fbb3ce13c00.png

d8a0bee9e95761bb3dc10bcd7e8c35b0.jpeg

61589ffd5aa7c4a4c6f230d92e2d94df.png

683ee34d57d7c5db015debb6f0abd5ed.png

机器学习

132b0900186f2866223a232acea56dbe.jpeg

323518730ba8b9ec7e1e18078c3afa4d.jpeg

d477e13f4ded2227d4509ce69e6f35f1.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值