WGCNA分析,简单全面的最新教程

欢迎关注天下博客:http://blog.genesino.com/2018/04/wgcna/

WGCNA基本概念

加权基因共表达网络分析 (WGCNA, Weighted correlation network analysis)是用来描述不同样品之间基因关联模式的系统生物学方法,可以用来鉴定高度协同变化的基因集, 并根据基因集的内连性和基因集与表型之间的关联鉴定候补生物标记基因或治疗靶点。

相比于只关注差异表达的基因,WGCNA利用数千或近万个变化最大的基因或全部基因的信息识别感兴趣的基因集,并与表型进行显著性关联分析。一是充分利用了信息,二是把数千个基因与表型的关联转换为数个基因集与表型的关联,免去了多重假设检验校正的问题。

理解WGCNA,需要先理解下面几个术语和它们在WGCNA中的定义。

  • 共表达网络:定义为加权基因网络。点代表基因,边代表基因表达相关性。加权是指对相关性值进行冥次运算 (冥次的值也就是软阈值 (power, pickSoftThreshold这个函数所做的就是确定合适的power))。无向网络的边属性计算方式为 abs(cor(genex, geney)) ^ power;有向网络的边属性计算方式为 (1+cor(genex, geney)/2) ^ power; sign hybrid的边属性计算方式为cor(genex, geney)^power if cor>0 else 0。这种处理方式强化了强相关,弱化了弱相关或负相关,使得相关性数值更符合无标度网络特征,更具有生物意义。如果没有合适的power,一般是由于部分样品与其它样品因为某种原因差别太大导致的,可根据具体问题移除部分样品或查看后面的经验值

  • Module(模块):高度內连的基因集。在无向网络中,模块内是高度相关的基因。在有向网络中,模块内是正相关的基因。把基因聚类成模块后,可以对每个模块进行三个层次的分析:1. 功能富集分析查看其功能特征是否与研究目的相符;2. 模块与性状进行关联分析,找出与关注性状相关度最高的模块;3. 模块与样本进行关联分析,找到样品特异高表达的模块。

    基因富集相关文章 去东方,最好用的在线GO富集分析工具GO、GSEA富集分析一网打进GSEA富集分析 - 界面操作。其它关联后面都会提及。

  • Connectivity (连接度):类似于网络中度 (degree)的概念。每个基因的连接度是与其相连的基因的边属性之和

  • Module eigengene E: 给定模型的第一主成分,代表整个模型的基因表达谱

  • Intramodular connectivity: 给定基因与给定模型内其他基因的关联度,判断基因所属关系。

  • Module membership: 给定基因表达谱与给定模型的eigengene的相关性。

  • Hub gene: 关键基因 (连接度最多或连接多个模块的基因)

  • Adjacency matrix (邻接矩阵):基因和基因之间的加权相关性值构成的矩阵

  • TOM (Topological overlap matrix):把邻接矩阵转换为拓扑重叠矩阵,以降低噪音和假相关,获得的新距离矩阵,这个信息可拿来构建网络或绘制TOM图

基本分析流程

  1. 构建基因共表达网络:使用加权的表达相关性。

  2. 识别基因集:基于加权相关性,进行层级聚类分析,并根据设定标准切分聚类结果,获得不同的基因模块,用聚类树的分枝和不同颜色表示。

  3. 如果有表型信息,计算基因模块与表型的相关性,鉴定性状相关的模块。

  4. 研究模型之间的关系,从系统层面查看不同模型的互作网络。

  5. 从关键模型中选择感兴趣的驱动基因,或根据模型中已知基因的功能推测未知基因的功能。

WGCNA包实战

R包WGCNA是用于计算各种加权关联分析的功能集合,可用于网络构建,基因筛选,基因簇鉴定,拓扑特征计算,数据模拟和可视化等。

输入数据和参数选择

  1. WGCNA本质是基于相关系数的网络分析方法,适用于多样品数据模式,一般要求样本数多于15个。样本数多于20时效果更好,样本越多,结果越稳定。
  2. 基因表达矩阵: 常规表达矩阵即可,即基因在行,样品在列,进入分析前做一个转置。RPKM、FPKM或其它标准化方法影响不大,推荐使用Deseq2的varianceStabilizingTransformationlog2(x+1)对标准化后的数据做个转换。如果数据来自不同的批次,需要先移除批次效应 (记得上次转录组培训课讲过如何操作)。如果数据存在系统偏移,需要做下quantile normalization
  3. 性状矩阵:用于关联分析的性状必须是数值型特征 (如下面示例中的Height, Weight, Diameter)。如果是区域或分类变量,需要转换为0-1矩阵的形式(0表示有此属性,1表示无此属性,如样品分组信息WT, KO, OE)。

    ID   WT  KO  OE Height Weight Diameter
    samp1    1   0   0   1   2   3
    samp2    1   0   0   2   4   6
    samp3    0   1   0   10  20  50
    samp4    0   1   0   15  30  80
    samp5    0   0   1   NA  9   8
    samp6    0   0   1   4   8   7
  4. 推荐使用Signed networkRobust correlation (bicor)。(这个根据自己的需要,看看上面写的每个网络怎么计算的,更知道怎么选择)

  5. 无向网络在power小于15或有向网络power小于30内,没有一个power值可以使无标度网络图谱结构R^2达到0.8或平均连接度讲到100以下,可能是由于部分样品与其他样品差别太大造成的。这可能由批次效应样品异质性实验条件对表达影响太大等造成, 可以通过绘制样品聚类查看分组信息、关联批次信息、处理信息和有无异常样品 (可以使用之前讲过的热图简化,增加行或列属性)。如果这确实是由有意义的生物变化引起的,也可以使用后面程序中的经验power值。

安装WGCNA

WGCNA依赖的包比较多,bioconductor上的包需要自己安装,cran上依赖的包可以自动安装。通常在R中运行下面4条语句就可以完成WGCNA的安装。

建议在编译安装R时增加--with-blas --with-lapack提高矩阵运算的速度,具体见R和Rstudio安装

source("https://bioconductor.org/biocLite.R")
biocLite(c("AnnotationDbi", "impute","GO.db", "preprocessCore"))
site="https://mirrors.tuna.tsinghua.edu.cn/CRAN"
install.packages(c("WGCNA", "stringr", "reshape2"), repos=site)
WGCNA实战

实战采用的是官方提供的清理后的矩阵,原矩阵信息太多,容易给人误导,后台回复 WGCNA 获取数据。

数据读入
library(WGCNA)
library(reshape2)
library(stringr)

options(stringsAsFactors = FALSE)
# 打开多线程
enableWGCNAThreads()

# 常规表达矩阵,log2转换后或
# Deseq2的varianceStabilizingTransformation转换的数据
# 如果有批次效应,需要事先移除,可使用removeBatchEffect
# 如果有系统偏移(可用boxplot查看基因表达分布是否一致),需要quantile normalization

exprMat <- "LiverFemaleClean.txt"
trait <- "TraitsClean.txt"

# 官方推荐 "signed" 或 "signed hybrid"
type = "unsigned"

# 相关性计算
# 官方推荐 biweight mid-correlation & bicor
# corType: pearson or bicor
corType = "pearson"

corFnc = ifelse(corType=="pearson", cor, bicor)
# 对二元变量,如样本性状信息计算相关性时,
# 或基因表达严重依赖于疾病状态时,需设置下面参数
maxPOutliers = ifelse(corType=="pearson",1,0.05)

# 关联样品性状的二元变量时,设置
robustY = ifelse(corType=="pearson",T,F)

##导入数据##
dataExpr <- read.table(exprMat, sep='\t', row.names=1, header=T, 
                     quote="", comment="", check.names=F)

dim(dataExpr)

## 筛选中位绝对偏差前75%的基因,至少MAD大于0.01
## 也可不做筛选,使MAD大于0即可
m.mad <- apply(dataExpr,1,mad)
dataExprVar <- dataExpr[which(m.mad > 
                 max(quantile(m.mad, probs=seq(0, 1, 0.25))[2],0.01)),]

## 转换为样品在行,基因在列的矩阵
dataExpr <- as.data.frame(t(dataExprVar))

## 检测缺失值
gsg = goodSamplesGenes(dataExpr, verbose = 3)
if (!gsg$allOK){
  # Optionally, print the gene and sample names that were removed:
  if (sum(!gsg$goodGenes)>0) 
    printFlush(paste("Removing genes:", 
                     paste(names(dataExpr)[!gsg$goodGenes], collapse = ",")));
  if (sum(!gsg$goodSamples)>0) 
    printFlush(paste("Removing samples:", 
                     paste(rownames(dataExpr)[!gsg$goodSamples], collapse = ",")));
  # Remove the offending genes and samples from the data:
  dataExpr = dataExpr[gsg$goodSamples, gsg$goodGenes]
}

nGenes = ncol(dataExpr)
nSamples = nrow(dataExpr)

# 读入表型数据,不是必须的
if(trait != "") {
  traitData <- read.table(file=trait, sep='\t', header=T, row.names=1,
                          check.names=FALSE, comment='',quote="")
  sampleName = rownames(dataExpr)
  traitData = traitData[match(sampleName, rownames(traitData)), ]
}
软阈值筛选

“`

查看是否有离群样品

sampleTree = hclust(dist(dataExpr), method = “average”)

plot(sampleTree, main = “Sample clustering to detect outliers”, sub=”“, xlab=”“)

软阈值筛选

软阈值的筛选原则是使构建的网络更符合无标度网络特征。

powers = c(c(1:10), seq(from = 12, to=30, by=2))
sft = pickSoftThreshold(dataExpr, powerVector=powers,
networkType=type, verbose=5)

par(mfrow = c(1,2))
cex1 = 0.9

横轴是Soft threshold (power),纵轴是无标度网络的评估参数,数值越高,

网络越符合无标度特征 (non-scale)

plot(sft fitIndices[,1],sign(sft f i t I n d i c e s [ , 1 ] , − s i g n ( s f t fitIndices[,3])*sft fitIndices[,2],xlab=SoftThreshold(power),ylab=ScaleFreeTopologyModelFit,signedR2,type=n,main=paste(Scaleindependence))text(sft f i t I n d i c e s [ , 2 ] , x l a b = ” S o f t T h r e s h o l d ( p o w e r ) ” , y l a b = ” S c a l e F r e e T o p o l o g y M o d e l F i t , s i g n e d R 2 ” , t y p e = ” n ” , m a i n = p a s t e ( “ S c a l e i n d e p e n d e n c e ” ) ) t e x t ( s f t fitIndices[,1], -sign(sft fitIndices[,3])sft f i t I n d i c e s [ , 3 ] ) ∗ s f t fitIndices[,2],
labels=powers,cex=cex1,col=”red”)

筛选标准。R-square=0.85

abline(h=0.85,col=”red”)

Soft threshold与平均连通性

plot(sft fitIndices[,1],sft f i t I n d i c e s [ , 1 ] , s f t fitIndices[,5],
xlab=”Soft Threshold (power)”,ylab=”Mean Connectivity”, type=”n”,
main = paste(“Mean connectivity”))
text(sft fitIndices[,1],sft f i t I n d i c e s [ , 1 ] , s f t fitIndices[,5], labels=powers,
cex=cex1, col=”red”)

power = sft$powerEstimate

无向网络在power小于15或有向网络power小于30内,没有一个power值可以使

无标度网络图谱结构R^2达到0.8,平均连接度较高如在100以上,可能是由于

部分样品与其他样品差别太大。这可能由批次效应、样品异质性或实验条件对

表达影响太大等造成。可以通过绘制样品聚类查看分组信息和有无异常样品。

如果这确实是由有意义的生物变化引起的,也可以使用下面的经验power值。

if (is.na(power)){
power = ifelse(nSamples<20, ifelse(type == “unsigned”, 9, 18),
ifelse(nSamples<30, ifelse(type == “unsigned”, 8, 16),
ifelse(nSamples<40, ifelse(type == “unsigned”, 7, 14),
ifelse(type == “unsigned”, 6, 12))
)
)
}

一步法网络构建:One-step network construction and module detection

power: 上一步计算的软阈值

maxBlockSize: 计算机能处理的最大模块的基因数量 (默认5000);

4G内存电脑可处理8000-10000个,16G内存电脑可以处理2万个,32G内存电脑可

以处理3万个

计算资源允许的情况下最好放在一个block里面。

corType: pearson or bicor

numericLabels: 返回数字而不是颜色作为模块的名字,后面可以再转换为颜色

saveTOMs:最耗费时间的计算,存储起来,供后续使用

mergeCutHeight: 合并模块的阈值,越大模块越少

net = blockwiseModules(dataExpr, power = power, maxBlockSize = nGenes,
TOMType = type, minModuleSize = 30,
reassignThreshold = 0, mergeCutHeight = 0.25,
numericLabels = TRUE, pamRespectsDendro = FALSE,
saveTOMs=TRUE, corType = corType,
maxPOutliers=maxPOutliers,
saveTOMFileBase = paste0(exprMat, “.tom”),
verbose = 3)

根据模块中基因数目的多少,降序排列,依次编号为 1-最大模块数

0 (grey)表示分入任何模块的基因。

table(net$colors)

“`

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

140 447 307 281 266 203 160 155 123 104 92 79 79 73 65 64 59

“`

层级聚类树展示各个模块

灰色的为未分类到模块的基因。

Convert labels to colors for plotting

moduleLabels = net$colors
moduleColors = labels2colors(moduleLabels)

Plot the dendrogram and the module colors underneath

如果对结果不满意,还可以recutBlockwiseTrees,节省计算时间

plotDendroAndColors(net dendrograms[[1]],moduleColors[net d e n d r o g r a m s [ [ 1 ] ] , m o d u l e C o l o r s [ n e t blockGenes[[1]]],
“Module colors”,
dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05)

保存鉴定出的模块和代表性信息

基因和所在模块信息

gene_module <- data.frame(ID=colnames(dataExpr), module=moduleColors)
gene_module = gene_module[order(gene_module$module),]
write.table(gene_module,file=paste0(exprMat,”.gene_module.xls”),
sep=”\t”,quote=F,row.names=F)

module eigengene, 可以绘制线图,作为每个模块的基因表达趋势的展示

MEs = net$MEs

不需要重新计算,改下列名字就好

MEs_col = MEs
colnames(MEs_col) = paste0(“ME”, labels2colors(
as.numeric(str_replace_all(colnames(MEs),”ME”,”“))))
MEs_col = orderMEs(MEs_col)

保存模块代表性信息

MEs_colt = as.data.frame(t(MEs_col))
colnames(MEs_colt) = rownames(dataExpr)
write.table(MEs_colt,file=paste0(exprMat,”.module_eipgengene.xls”),
sep=”\t”,quote=F)

根据基因间表达量进行聚类所得到的各模块间的相关性图

marDendro/marHeatmap 设置下、左、上、右的边距

plotEigengeneNetworks(MEs_col, “Eigengene adjacency heatmap”,
marDendro = c(3,3,2,4),
marHeatmap = c(3,4,2,2), plotDendrograms = T,
xLabelsAngle = 90)

如果有表型数据,也可以跟ME数据放一起,一起出图

MEs_colpheno = orderMEs(cbind(MEs_col, traitData))

plotEigengeneNetworks(MEs_colpheno, “Eigengene adjacency heatmap”,

marDendro = c(3,3,2,4),

marHeatmap = c(3,4,2,2), plotDendrograms = T,

xLabelsAngle = 90)

模块与表型数据关联

if (corType==”pearsoon”) {
modTraitCor = cor(MEs_col, traitData, use = “p”)
modTraitP = corPvalueStudent(modTraitCor, nSamples)
} else {
modTraitCorP = bicorAndPvalue(MEs_col, traitData, robustY=robustY)
modTraitCor = modTraitCorP bicormodTraitP=modTraitCorP b i c o r m o d T r a i t P = m o d T r a i t C o r P p
}

signif表示保留几位小数

textMatrix = paste(signif(modTraitCor, 2), “\n(“, signif(modTraitP, 1), “)”, sep = “”)
dim(textMatrix) = dim(modTraitCor)
labeledHeatmap(Matrix = modTraitCor, xLabels = colnames(traitData),
yLabels = colnames(MEs_col),
cex.lab = 0.5,
ySymbols = colnames(MEs_col), colorLabels = FALSE,
colors = blueWhiteRed(50),
textMatrix = textMatrix, setStdMargins = FALSE,
cex.text = 0.5, zlim = c(-1,1),
main = paste(“Module-trait relationships”))

modTraitCorMelt = as.data.frame(modTraitCor)
write.table(modTraitCorMelt,file=paste0(exprMat,”.module_trait_correlation.xls”),
sep=”\t”,quote=F)
modTraitCorMelt ID=rownames(modTraitCor)modTraitCorMelt=melt(modTraitCorMelt)colnames(modTraitCorMelt)<c(Module,Trait,PersonCorrelationValue)modTraitPMelt=as.data.frame(modTraitP)write.table(modTraitPMelt,file=paste0(exprMat,.moduletraitcorrelationPvalue.xls),sep=\t,quote=F)modTraitPMelt I D = r o w n a m e s ( m o d T r a i t C o r ) m o d T r a i t C o r M e l t = m e l t ( m o d T r a i t C o r M e l t ) c o l n a m e s ( m o d T r a i t C o r M e l t ) < − c ( “ M o d u l e ” , ” T r a i t ” , ” P e r s o n C o r r e l a t i o n V a l u e ” ) m o d T r a i t P M e l t = a s . d a t a . f r a m e ( m o d T r a i t P ) w r i t e . t a b l e ( m o d T r a i t P M e l t , f i l e = p a s t e 0 ( e x p r M a t , ” . m o d u l e t r a i t c o r r e l a t i o n P v a l u e . x l s ” ) , s e p = ” \t ” , q u o t e = F ) m o d T r a i t P M e l t ID = rownames(modTraitP)
modTraitPMelt = melt(modTraitPMelt)
colnames(modTraitPMelt) <- c(“Module”,”Trait”,”Pvalue”)

modTraitCorP = cbind(modTraitCorMelt, Pvalue=modTraitPMelt$Pvalue)

modTraitCorP = merge(modTraitCorMelt, modTraitPMelt, by=c(“Module”,”Trait”))
write.table(modTraitCorP,file=paste0(exprMat,”.module_trait_correlationPvalueMelt.xls”),
sep=”\t”,quote=F,row.names=F)

从上图可以看到Emagenta与Insulin_ug_l相关

模块内基因与表型数据关联

性状跟模块虽然求出了相关性,可以挑选最相关的那些模块来分析,

但是模块本身仍然包含非常多的基因,还需进一步的寻找最重要的基因。

所有的模块都可以跟基因算出相关系数,所有的连续型性状也可以跟基因的表达

值算出相关系数。

如果跟性状显著相关基因也跟某个模块显著相关,那么这些基因可能就非常重要

计算模块与基因的相关性矩阵

if (corType==”pearsoon”) {
geneModuleMembership = as.data.frame(cor(dataExpr, MEs_col, use = “p”))
MMPvalue = as.data.frame(corPvalueStudent(
as.matrix(geneModuleMembership), nSamples))
} else {
geneModuleMembershipA = bicorAndPvalue(dataExpr, MEs_col, robustY=robustY)
geneModuleMembership = geneModuleMembershipA bicorMMPvalue=geneModuleMembershipA b i c o r M M P v a l u e = g e n e M o d u l e M e m b e r s h i p A p
}

计算性状与基因的相关性矩阵

只有连续型性状才能进行计算,如果是离散变量,在构建样品表时就转为0-1矩阵。

if (corType==”pearsoon”) {
geneTraitCor = as.data.frame(cor(dataExpr, traitData, use = “p”))
geneTraitP = as.data.frame(corPvalueStudent(
as.matrix(geneTraitCor), nSamples))
} else {
geneTraitCorA = bicorAndPvalue(dataExpr, traitData, robustY=robustY)
geneTraitCor = as.data.frame(geneTraitCorA bicor)geneTraitP=as.data.frame(geneTraitCorA b i c o r ) g e n e T r a i t P = a s . d a t a . f r a m e ( g e n e T r a i t C o r A p)
}

geneTraitCorMelt = as.data.frame(geneTraitCor)
write.table(geneTraitCorMelt,file=paste0(exprMat,”.gene_trait_correlation.xls”),
sep=”\t”,quote=F)
geneTraitCorMelt ID=rownames(geneTraitCor)geneTraitCorMelt=melt(geneTraitCorMelt)colnames(geneTraitCorMelt)<c(Gene,Trait,PersonCorrelationValue)geneTraitPMelt=as.data.frame(geneTraitP)write.table(geneTraitPMelt,file=paste0(exprMat,.genetraitcorrelationPvalue.xls),sep=\t,quote=F)geneTraitPMelt I D = r o w n a m e s ( g e n e T r a i t C o r ) g e n e T r a i t C o r M e l t = m e l t ( g e n e T r a i t C o r M e l t ) c o l n a m e s ( g e n e T r a i t C o r M e l t ) < − c ( “ G e n e ” , ” T r a i t ” , ” P e r s o n C o r r e l a t i o n V a l u e ” ) g e n e T r a i t P M e l t = a s . d a t a . f r a m e ( g e n e T r a i t P ) w r i t e . t a b l e ( g e n e T r a i t P M e l t , f i l e = p a s t e 0 ( e x p r M a t , ” . g e n e t r a i t c o r r e l a t i o n P v a l u e . x l s ” ) , s e p = ” \t ” , q u o t e = F ) g e n e T r a i t P M e l t ID = rownames(geneTraitP)
geneTraitPMelt = melt(geneTraitPMelt)
colnames(geneTraitPMelt) <- c(“Gene”,”Trait”,”Pvalue”)

geneTraitCorP = cbind(geneTraitCorMelt, Pvalue=geneTraitPMelt$Pvalue)

geneTraitCorP = merge(geneTraitCorMelt, geneTraitPMelt, by=c(“Gene”,”Trait”))
write.table(geneTraitCorP,file=paste0(exprMat,”.gene_trait_correlationPvalueMelt.xls”),
sep=”\t”,quote=F,row.names=F)

最后把两个相关性矩阵联合起来,指定感兴趣模块进行分析

module = “magenta”
pheno = “Insulin_ug_l”
modNames = substring(colnames(MEs_col), 3)

获取关注的列

module_column = match(module, modNames)
pheno_column = match(pheno,colnames(traitData))

获取模块内的基因

moduleGenes = moduleColors == module

sizeGrWindow(7, 7)
par(mfrow = c(1,1))

与性状高度相关的基因,也是与性状相关的模型的关键基因

verboseScatterplot(abs(geneModuleMembership[moduleGenes, module_column]),
abs(geneTraitCor[moduleGenes, pheno_column]),
xlab = paste(“Module Membership in”, module, “module”),
ylab = paste(“Gene significance for”, pheno),
main = paste(“Module membership vs. gene significance\n”),
cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)

可视化基因网络

如果采用分布式计算,或设置的blocksize>=总基因数,直接load计算好的TOM结果

否则需要再计算一遍,比较耗费时间

TOM = TOMsimilarityFromExpr(dataExpr, power=power, corType=corType, networkType=type)

load(net$TOMFiles[1], verbose=T)

TOM <- as.matrix(TOM)

dissTOM = 1-TOM

Transform dissTOM with a power to make moderately strong

connections more visible in the heatmap

plotTOM = dissTOM^7

Set diagonal to NA for a nicer plot

diag(plotTOM) = NA

Call the plot function

TOMplot(plotTOM, net$dendrograms, moduleColors,
main = “Network heatmap plot, all genes”)

导出网络到Cytoscape

probes = colnames(dataExpr)
dimnames(TOM) <- list(probes, probes)

Export the network into edge and node list files Cytoscape can read

cyt = exportNetworkToCytoscape(TOM,
edgeFile = paste(exprMat, “.edges.txt”, sep=”“),
nodeFile = paste(exprMat, “.nodes.txt”, sep=”“),
weighted = TRUE,
threshold = 0.02,
nodeNames = probes,
nodeAttr = moduleColors)

分步法展示每一步都做了什么

计算邻接矩阵

adjacency = adjacency(dataExpr, power = power)

把邻接矩阵转换为拓扑重叠矩阵,以降低噪音和假相关,获得距离矩阵。

TOM = TOMsimilarity(adjacency)
dissTOM = 1-TOM

层级聚类计算基因之间的距离树

geneTree = hclust(as.dist(dissTOM), method = “average”)

模块合并

We like large modules, so we set the minimum module size relatively high:

minModuleSize = 30

Module identification using dynamic tree cut:

dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM,
deepSplit = 2, pamRespectsDendro = FALSE,
minClusterSize = minModuleSize)

Convert numeric lables into colors

dynamicColors = labels2colors(dynamicMods)

通过计算模块的代表性模式和模块之间的定量相似性评估,合并表达图谱相似

的模块
MEList = moduleEigengenes(datExpr, colors = dynamicColors)
MEs = MEList$eigengenes

Calculate dissimilarity of module eigengenes

MEDiss = 1-cor(MEs)

Cluster module eigengenes

METree = hclust(as.dist(MEDiss), method = “average”)
MEDissThres = 0.25

Call an automatic merging function

merge = mergeCloseModules(datExpr, dynamicColors, cutHeight = MEDissThres, verbose = 3)

The merged module colors

mergedColors = merge$colors;

Eigengenes of the new merged

分步法完结

Reference:

  1. 官网 https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
  2. 术语解释 https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/Simulated-00-Background.pdf
  3. FAQ https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信宝典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值