本系列为TI(Texas Instruments) mmWave radar sensors 系列视频公开课 的学习笔记。
-
视频网址: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation?context=1128486-1139153-1128542
-
关注 下面的公众号,回复“ TI毫米波 ”,即可获取 本系列完整的pdf笔记文件~
内容在CSDN和微信公众号同步更新
- Markdown源文件暂未开源
- 笔记难免存在问题,欢迎联系指正
FMCW Radars – Module 1 : Range Estimation
FMCW Radars – Module 2 : The Phase of the IF Signal
FMCW Radars – Module 3 : Velocity Estimation
FMCW Radars – Module 4 : Some System Design Topics
FMCW Radars – Module 5 : Angle Estimation
Module 3 Velocity Estimation
- Content
- Qucik review of background material on FFT’s
- Measuring Velociy
- Maximum measurable velocity
- Velocity Resolution and concept of frame
This module : to answer the following questions
- How does the radar estimate velocity(v) of an object?
- What if there are multiple objects at the same range? (with different relative volocities)
- How close? (velocity resolution )
- Is there a limit on the maximum velocity that a radar can measure?
- maximum velocity
FFT’s on a complex sequence
- Consider a discrete signal corresponding to a phasor rotating a constant rate of
ω
\omega
ω radians per sample
- An FFT on these series of samples produces a peak with the location of the peak ω \omega ω
Note: 下图中的 ω 1 = ω \omega_1 = \omega ω1=ω
- If the signal consists of the sum of two phasors:
- ⇒ \Rightarrow ⇒ The FFT has two peaks
- each phasor rotating at the rate of ω 1 \omega_1 ω1 and ω 2 \omega_2 ω2 radians per sample, respectively
Question: How far apart the two frequencies ω 1 \omega_1 ω1 and ω 2 \omega_2 ω2 have to be for them to show up as separate peaks in the FT?
- Case 1:
ω
1
=
0
\omega_1 = 0
ω1=0,
ω
2
=
π
/
N
\omega_2 = \pi/N
ω2=π/N
-
Over N samples , the 2nd phasor has traversed 0.5 cycle ( π \pi π rads) more than the 1st phasor
❌ not suficient to resolve the two objects in the frequency domain
-
But over 2N smaples , the 2nd phasor has traversed 1 cycle ( π \pi π rads) more than the 1st phasor
✅ ❌ able to resolve the two objects in the frequency domain
-
结论: Longer the sequence length ⇒ \Rightarrow ⇒ better resolution
- 当 序列长度为N 时,样本间的 ω \omega ω差异至少(分辨率 )为 2 π / N 2\pi / N 2π/N ( r a d / s a m p l e rad/sample rad/sample)
总结: 离散信号 VS 连续信号 频率分辨率
- Continuous signals:
- $\Delta f = \frac{1}{T} $ cycles/sec
- Discrete signals:
- Δ ω = 2 π N \Delta \omega = \frac{2\pi}{N} Δω=N2π radians/sample =$ \frac{1}{N} $cycles/sample
- (1 cycle = 2 π \pi π radians )
How to measure the velocity (v) of an object using 2 chirps
- Process:
- 1 Transmit two chirps separated by T c T_c Tc
- 2 The range-FFTs corresponding to each chirp will have peaks in the same location but with differing phase
- 3 The measured phase difference ( ω \omega ω) corresponds to a motion in the object of v T c v T_c vTc
- 速度计算:
- ω = 4 π v T c λ \omega = \frac{4\pi v T_c}{\lambda} ω=λ4πvTc
- ⇒ \Rightarrow ⇒ v = λ ω 4 π T c v = \frac{\lambda \omega}{4\pi T_c} v=4πTcλω
结论: The phase difference measured across two consecutive chirps can be used to estimate the velocity of the object
Maximum measurable velocity
- Unambiguous :
- Movement away from radar ⇒ \Rightarrow ⇒ ω > 0 \omega >0 ω>0
- Movement towards the radar ⇒ \Rightarrow ⇒ ω < 0 \omega < 0 ω<0
- The measurement is unambiguous only if $|\omega| < \pi $(180 ^\circ)
- 因此,最大measurable速度:
- 4 π v T c λ < π \frac{4\pi v T_c}{\lambda} < \pi λ4πvTc<π ⇒ \Rightarrow ⇒ v < λ 4 T c v < \frac{\lambda}{4 T_c} v<4Tcλ
结论 : The maximum relative speed ( v m a x v_{max} vmax) that can be measured by 2 chirps spaced T c T_c Tc apart is:
v m a x = λ 4 T c v_{max} = \frac{\lambda}{4T_c} vmax=4Tcλ
因此,Higher v m a x v_{max} vmax requires closely spaced chirps
Measuring velocity with multiple objects at the same range
目前,已经知道了如何测量 the velocity of a single object
该方法同样适用于multiple objects at different ranges
What if there are multiple objects at the same range?
- consider two objects equidistant from the radar approaching the radar at speeds v 1 v_1 v1 and v 2 v_2 v2
- Solution: Transmit N equi-spaced chirps
- (a frame )
- 即:在 Range-FFT peaks对应的sequence of phasors 再做FFT ,就可以 resolves the two objects
- 该FFT称为: Doppler-FFT
结论 : ω 1 \omega_1 ω1 and ω 2 \omega_2 ω2 correspond to the phase difference between consecutive chirps for the respectively objects
- $v_1 = \frac{\lambda \omega_1}{4 \pi T_c} $
- $v_2 = \frac{\lambda \omega_2}{4 \pi T_c} $
Velocity resolution
- What is the velocity resolution (
v
r
e
s
v_{res}
vres) capability of the “doppler-FFT”?
- 即doppler-FFT结果中的两个peak能够被区分
- 推导:
- 假设两个物体的速度差为 Δ v \Delta v Δv, they will have their respective angular frequencies separated by Δ ω = 4 π Δ v T c λ \Delta \omega = \frac{4\pi \Delta v T_c}{\lambda} Δω=λ4πΔvTc
- 若观察sequence的长度为N, 则要求 Δ ω = 2 π / N \Delta \omega = 2 \pi /N Δω=2π/N
- ⇒ \Rightarrow ⇒ Δ v > λ 2 N T c \Delta v > \frac{\lambda}{2NT_c} Δv>2NTcλ
注意: 这里的 N: number of chirps in one frame !
- 因此,也可按照下图表示为 v r e s = λ 2 T f v_{res} = \frac{\lambda}{2T_f} vres=2Tfλ
- T f T_f Tf: frame time!
Question: 比较下述两个雷达的maximum measurable velocity ( v m a x v_{max} vmax) 和 velocity resolution ( v r e s v_{res} vres)
- v m a x = λ 4 T c v_{max} = \frac{\lambda}{4T_c} vmax=4Tcλ ⇒ \Rightarrow ⇒ Radar A更好
- v r e s v_{res} vres二者相同
Next module:
- 使用目前关于range 和 velocity 的知识
- design a transmitted which meets certain specified requirements