TI mmWave radar sensors Tutorial 笔记 | Module 3: Velocity Estimation

本系列为TI(Texas Instruments) mmWave radar sensors 系列视频公开课 的学习笔记。

  • 视频网址: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation?context=1128486-1139153-1128542

  • 关注 下面的公众号,回复“ TI毫米波 ”,即可获取 本系列完整的pdf笔记文件~


内容在CSDN和微信公众号同步更新

在这里插入图片描述

  • Markdown源文件暂未开源
  • 笔记难免存在问题,欢迎联系指正

FMCW Radars – Module 1 : Range Estimation
FMCW Radars – Module 2 : The Phase of the IF Signal
FMCW Radars – Module 3 : Velocity Estimation
FMCW Radars – Module 4 : Some System Design Topics
FMCW Radars – Module 5 : Angle Estimation

Module 3 Velocity Estimation

  • Content
    • Qucik review of background material on FFT’s
    • Measuring Velociy
    • Maximum measurable velocity
    • Velocity Resolution and concept of frame

This module : to answer the following questions

  • How does the radar estimate velocity(v) of an object?

picture 2

  • What if there are multiple objects at the same range? (with different relative volocities)

picture 1

  • How close? (velocity resolution )
  • Is there a limit on the maximum velocity that a radar can measure?
    • maximum velocity

picture 3

FFT’s on a complex sequence

  • Consider a discrete signal corresponding to a phasor rotating a constant rate of ω \omega ω radians per sample
    • An FFT on these series of samples produces a peak with the location of the peak ω \omega ω

Note: 下图中的 ω 1 = ω \omega_1 = \omega ω1=ω
picture 4

  • If the signal consists of the sum of two phasors:
    • ⇒ \Rightarrow The FFT has two peaks
    • each phasor rotating at the rate of ω 1 \omega_1 ω1 and ω 2 \omega_2 ω2 radians per sample, respectively

picture 5

Question: How far apart the two frequencies ω 1 \omega_1 ω1 and ω 2 \omega_2 ω2 have to be for them to show up as separate peaks in the FT?

  • Case 1: ω 1 = 0 \omega_1 = 0 ω1=0, ω 2 = π / N \omega_2 = \pi/N ω2=π/N
    • Over N samples , the 2nd phasor has traversed 0.5 cycle ( π \pi π rads) more than the 1st phasor

      not suficient to resolve the two objects in the frequency domain

    • But over 2N smaples , the 2nd phasor has traversed 1 cycle ( π \pi π rads) more than the 1st phasor

      ✅ ❌ able to resolve the two objects in the frequency domain

picture 6

picture 7

结论: Longer the sequence length ⇒ \Rightarrow better resolution

  • 序列长度为N 时,样本间的 ω \omega ω差异至少(分辨率 )为 2 π / N 2\pi / N 2π/N ( r a d / s a m p l e rad/sample rad/sample)

总结: 离散信号 VS 连续信号 频率分辨率

  • Continuous signals:
    • $\Delta f = \frac{1}{T} $ cycles/sec
  • Discrete signals:
    • Δ ω = 2 π N \Delta \omega = \frac{2\pi}{N} Δω=N2π radians/sample =$ \frac{1}{N} $cycles/sample
    • (1 cycle = 2 π \pi π radians )

How to measure the velocity (v) of an object using 2 chirps

  • Process:
    • 1 Transmit two chirps separated by T c T_c Tc
    • 2 The range-FFTs corresponding to each chirp will have peaks in the same location but with differing phase
    • 3 The measured phase difference ( ω \omega ω) corresponds to a motion in the object of v T c v T_c vTc
  • 速度计算:
    • ω = 4 π v T c λ \omega = \frac{4\pi v T_c}{\lambda} ω=λ4πvTc
    • ⇒ \Rightarrow v = λ ω 4 π T c v = \frac{\lambda \omega}{4\pi T_c} v=4πTcλω

picture 8

结论: The phase difference measured across two consecutive chirps can be used to estimate the velocity of the object

Maximum measurable velocity

  • Unambiguous :
    • Movement away from radar ⇒ \Rightarrow ω > 0 \omega >0 ω>0
    • Movement towards the radar ⇒ \Rightarrow ω < 0 \omega < 0 ω<0
    • The measurement is unambiguous only if $|\omega| < \pi $(180 ^\circ)

picture 9

  • 因此,最大measurable速度:
    • 4 π v T c λ < π \frac{4\pi v T_c}{\lambda} < \pi λ4πvTc<π ⇒ \Rightarrow v < λ 4 T c v < \frac{\lambda}{4 T_c} v<4Tcλ

结论 : The maximum relative speed ( v m a x v_{max} vmax) that can be measured by 2 chirps spaced T c T_c Tc apart is:

  • v m a x = λ 4 T c v_{max} = \frac{\lambda}{4T_c} vmax=4Tcλ

  • 因此,Higher v m a x v_{max} vmax requires closely spaced chirps

Measuring velocity with multiple objects at the same range

目前,已经知道了如何测量 the velocity of a single object

  • 该方法同样适用于multiple objects at different ranges

  • What if there are multiple objects at the same range?

  • consider two objects equidistant from the radar approaching the radar at speeds v 1 v_1 v1 and v 2 v_2 v2
  • Solution: Transmit N equi-spaced chirps
    • (a frame )

picture 10

  • 即:在 Range-FFT peaks对应的sequence of phasors 再做FFT ,就可以 resolves the two objects
    • 该FFT称为: Doppler-FFT

结论 : ω 1 \omega_1 ω1 and ω 2 \omega_2 ω2 correspond to the phase difference between consecutive chirps for the respectively objects

  • $v_1 = \frac{\lambda \omega_1}{4 \pi T_c} $
  • $v_2 = \frac{\lambda \omega_2}{4 \pi T_c} $

Velocity resolution

  • What is the velocity resolution ( v r e s v_{res} vres) capability of the “doppler-FFT”?
    • 即doppler-FFT结果中的两个peak能够被区分
  • 推导:
    • 假设两个物体的速度差为 Δ v \Delta v Δv, they will have their respective angular frequencies separated by Δ ω = 4 π Δ v T c λ \Delta \omega = \frac{4\pi \Delta v T_c}{\lambda} Δω=λ4πΔvTc
    • 若观察sequence的长度为N, 则要求 Δ ω = 2 π / N \Delta \omega = 2 \pi /N Δω=2π/N
    • ⇒ \Rightarrow Δ v > λ 2 N T c \Delta v > \frac{\lambda}{2NT_c} Δv>2NTcλ

注意: 这里的 N: number of chirps in one frame !

  • 因此,也可按照下图表示为 v r e s = λ 2 T f v_{res} = \frac{\lambda}{2T_f} vres=2Tfλ
  • T f T_f Tf: frame time!

picture 11

Question: 比较下述两个雷达的maximum measurable velocity ( v m a x v_{max} vmax) 和 velocity resolution ( v r e s v_{res} vres)

  • v m a x = λ 4 T c v_{max} = \frac{\lambda}{4T_c} vmax=4Tcλ ⇒ \Rightarrow Radar A更好
  • v r e s v_{res} vres二者相同

Next module:

  • 使用目前关于range 和 velocity 的知识
  • design a transmitted which meets certain specified requirements
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值