轨迹规划是基于路径规划的结果进行的,两者是相互关联的但又不完全相同。
在机器人运动控制中,路径规划通常指的是寻找移动物体从一个起始姿态到达目标姿态所需经过的离散路点的路径。它的目的是确定一系列离散点的线性起点和终点,而不需要考虑如何让机器人实际上运动。
轨迹规划则是指在已经规划好的路径基础上,通过调整速度、加速度、角速度和角加速度等参数产生平滑的轨迹,使得机器人能够顺利地按照规划好的路径运动。轨迹规划与路径规划不同,它需要确定连续时间段内的移动姿态和动力学参数,并且必须考虑机器人的动力学限制和运动状态的连续性。
路径规划和轨迹规划是互相依存的,二者也有一定的区别。路径规划通常应用于离散运动系统中,而轨迹规划通常应用于连续运动系统中。在进行机器人运动控制时,需要先通过路径规划得到一条可行路径,然后再通过轨迹规划将其转换为精确的运动轨迹,并交由机器人系统控制器进行执行。
路径规划和轨迹规划都有多种算法,下面列举了常见的一些:
-
路径规划算法:最短路径算法、A算法、Dijkstra算法、RRT(随机快速探索树)算法、PRM(概率路线映射)算法、FMT(快速优化最短路径搜索)算法等。
-
轨迹规划算法:样条插值法、小波变换法、多项式拟合法、优化控制法等。其中,优化控制法包括经典方法如PID控制、LQR控制以及逆向动力学等模型预测控制。
这些算法各具优缺点,在不同的应用场景下选择不同的算法能够有效地提高路径和轨迹规划的效率和精度。同时,也需要根据实际情况进行适当的修改或组合,以满足特定的需求。