[FOC-理论学习]基于空间矢量SVPWM与基于载波的等效分析

文章详细介绍了永磁同步电机矢量控制逆变器中两种空间矢量脉宽调制(SVPWM)方法的等效推导。第一部分阐述了基于空间矢量的SVPWM,通过六个扇区的位置和电压信号作用时间来控制电机端电压。第二部分则讨论了基于载波的SVPWM,通过调整基准值形成相电压的马鞍波形。通过对比两种方法的端电压方程,证明了它们在数学上等效,最终都会产生马鞍波形的端电压。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

永磁同步电机矢量控制逆变器电路常采用基于空间矢量的PWM生成方法,通过对六个扇区的位置判断,对三相逆变器开关施加数字信号来控制电机三相电压信号通断,从而进行电机控制。

不过经典矢量控制理论和Simulink程序仿真框图也会采用基于载波的分析方法,在三相电压信号中调整基准值,形成端电压马鞍波效果。

文献中介绍两种SVPWM是等效的,那如何进行等效推导呢,下面博主详细介绍推导过程:

(1)基于空间矢量SVPWM

下图给出了六个扇区的分布图,我们以第一扇区为例,介绍端电压的公式推导。

 

首先有第一扇区电压信号分解图可知

\frac{U_{m}}{sin\left( \frac{\pi}{3} \right)} = \frac{\frac{T_{4}}{T_{s}} \cdot \frac{2}{3}V_{dc}}{sin\left( \frac{\pi}{3} - \theta \right)} = \frac{\frac{T_{6}}{T_{s}} \cdot \frac{2}{3}V_{dc}}{sin(\theta)}

其中θ=ωt

计算得到各矢量信号作用时间

T_{4} = \sqrt{3}\frac{U_{m}}{V_{dc}}T_{s}sin\left( \frac{\pi}{3} - \omega t \right)

T_{6} = \sqrt{3}\frac{U_{m}}{V_{dc}}T_{s}sin(\omega t)

T_{0} = T_{7} = \frac{1}{2}\left( T_{s} - T_{4} - T_{6} \right)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GarminWilliam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值