matlab 三质量-弹簧系统受激振力

本文探讨了一个三质量弹簧系统在不考虑阻尼情况下的运动方程建模,通过仿真分析得到系统的固有频率和对应主振型,展示了单位阶跃响应下x1(t)的变化情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、内容简介


44-可以交流、咨询、答疑

建立系统运动方程,研究固有频率和对应主振型

2、内容说明

三质量-弹簧系统受激振力,并不考虑各自的阻尼。建立系统运动方程。

解:由于阻尼对固有频率没有影响,故本文不研究阻尼的影响, 假定阻尼都为0。原点取在各自静平衡位置。受力分析:

建立运动微分方程:

矩阵形式:

假定参数:

m1=1kg、m2=2kg、m3=2kg、k1=5N/m、k2=10N/m 、k3=15N/m、k4=20N/m,

假定p1(t)为单位阶跃响应,p2(t)= p3(t)=0;求解x1(t)变化情况

3、仿真分析

ose all;
clear;
%% -----------参数----------------
m1=1;%质量参数m1
m2=2;%质量参数m2
m3=2;%质量参数m3
k1=5;%刚度参数k1
k2=10;%刚度参数2
k3=15;%刚度参数k3
k4=20;%刚度参数k4
%% ----------计算-------------
%-------多自由度系统的建模然后找一个方法分析它的振幅 响应,固有频率和主振型
m=[m1 0 0;0 m2 0;0 0 m3]; %质量矩阵
k=[k1+k2 -k2 0;-k2 k2+k3 -k3;0 -k3 k3+k4]; %刚度矩阵
G=inv(m);       %生成质量阵的逆阵
H=G*k;          %生成动力矩阵

计算结果如下

固有频率f1=0.6169Hz

f1对应主振型1 1.1124 0.61237Hz

固有频率f2=2.5662Hz

f2对应主振型1 -0.11237 -0.61237Hz

固有频率f3=3.9789Hz

f3对应主振型1 -0.57735 0.57735Hz

x1(t)随时间变化情况

4、参考论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值