【激光雷达点云障碍物检测】(三)欧式聚类

本文介绍了使用激光雷达点云进行障碍物检测的过程,特别是通过欧式聚类算法来识别点云中的物体。文章通过实例代码展示了如何手动实现和结合点云库函数完成这一任务,提供了分割效果的展示。
摘要由CSDN通过智能技术生成

今天看代码时候发现这个代码的作者真的是很有心,一边手动实现了一些算法,一边调用了点云库中的函数,都很值得学习

分割效果:

代码:

#include <iostream>
#include <pcl/io/io.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/common/common.h>
#include <unordered_set>
using namespace std;
using namespace pcl;
struct Box
{
	float x_min;
	float y_min;
	float z_min;
	float x_max;
	float y_max;
	float z_max;
};
int main()
{
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
	pcl::PCDReader reader;
	reader.read("D:\\SFND_Lidar_Obstacle_Detection\\SFND_L
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值