点云库PCL学习:有条件约束的平面分割(SACMODEL_NORMAL_PARALLEL_PLANE)

在使用pcl提取点云空间中的平面时,我们一般采用SACMODEL_PLANE模型,利用采样一致性算法(RANSAC)算法进行提取。当环境比较复杂时,我们可以采用SACMODEL_NORMAL_PARALLEL_PLANE模型约束平面的法向方向,更加准确的分割出平面点云。

封装后的函数

参数:(输入点云,法线法向,提取的平面点云,滤掉的点云,平面参数,点到模型的最大允许距离,迭代次数)

void normalPlaneSeg(pcl::PointCloud<pcl::PointXYZ>::Ptr Inputcloud,Eigen::Vector3f axis, pcl::PointCloud<pcl::PointXYZ>::Ptr filtercloud, pcl::PointCloud<pcl::PointXYZ>::Ptr filtercloud1,
pcl::ModelCoefficients::Ptr coefficients, double Threshold, int Iterationscount=1000)
{
       typedef pcl::PointXYZ PointT;
       //定义一些对象
       pcl::NormalEstimation<PointT,pcl::Normal> ne;  //法线估计对象
       pcl::SACSegmentationFromNormals<PointT,pcl::Normal> seg;    //分割对象
       pcl::PCDWriter writer;                 //PCD文件读取对象
       pcl::ExtractIndices<PointT>extract;   //点提取对象
       pcl::search::KdTree<PointT>::Ptr tree(new pcl::search::KdTree<PointT>());
       //定义一些变量
       pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>);
       pcl::PointCloud<PointT>::Ptr cloud_filtered(new pcl::PointCloud<PointT>);
       pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2(new pcl::PointCloud<pcl::Normal>);
       pcl::PointIndices::Ptr inliers(new pcl::PointIndices);

       ne.setSearchMethod(tree);
       ne.setInputCloud(Inputcloud);
       ne.setKSearch(5);
       ne.compute(*cloud_normals);
       
       seg.setOptimizeCoefficients(true);           //设置对估计模型优化
       seg.setModelType(pcl::SACMODEL_NORMAL_PARALLEL_PLANE);//设置分割模型为带约束的平面
       seg.setMethodType(pcl::SAC_RANSAC);          //参数估计方法
       seg.setNormalDistanceWeight(0.1);            //设置表面法线权重系数
       seg.setMaxIterations(Iterationscount);       //设置迭代的最大次数,默认是10000
       seg.setDistanceThreshold(Threshold);         //设置内点到模型的距离允许最大值
       seg.setInputCloud(Inputcloud);
       seg.setInputNormals(cloud_normals);
       seg.setAxis(axis);
       seg.setEpsAngle(PI / 120);//设置角度误差
       seg.segment(*inliers, *coefficients);
       
       extract.setInputCloud(Inputcloud);
       extract.setIndices(inliers);
       extract.setNegative(false);//设置成true是保存滤波后剩余的点,false是保存在区域内的点
       extract.filter(*filtercloud);
       extract.setNegative(true);//设置成true是保存滤波后剩余的点,false是保存在区域内的点
       extract.filter(*filtercloud1);
} 

实例

提取对圆柱体点云的顶面
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值