四元数
(x,y,z,w)
纯四元数
类似于纯虚数,即实部 w
为0的四元数
xi+yj+zk
单位四元数
- 单位四元数(Unit quaternion)可以用于表示 三维空间里的旋转.
- 它与常用的两种方式
三维正交旋转矩阵
和欧拉角
是等价的. - 可以避免了 欧拉角表示中的
万向锁
的问题. - 比起三维正交矩阵表示,四元数表示能够更方便地给出旋转的转轴与旋转角.
轴角表示的旋转
[x,y,z,theta]
前面三个表示轴,最后一个表示角度。
单位四元数算是由轴角转换来的
w = cos(theta/2)
x = ax * sin(theta/2)
y = ay * sin(theta/2)
z = az * sin(theta/2)
其中(ax,ay,az)表示 虚轴 的矢量,theta表示绕此轴的旋转角度
三维旋转:欧拉角、四元数、旋转矩阵、轴角之间的转换
总结
四元数的优点
- 使用四元数来串联 “旋转”. 要比使用矩阵快得多.
- 从四元数转换到矩阵,要比从欧拉角转换到矩阵快一点
- 四元数只需要4个数字(如果旋转四元数已经单位化了那么只需要3个,实数部分可以在运行时计算)来表示一个旋转,而矩阵需要至少9个数字
四元数的缺点
- 因为浮点数的舍入运算错误,四元数可能会变无效。不过,这个错误可以通过重新单位化四元数来避免。
- 使用四元数最具威慑性的地方,还是四元数的理解难度大