图形学基础 | 四元数与空间旋转

Understanding Quaternions 中文翻译《理解四元数》
四元数与三维旋转

四元数

(x,y,z,w)

纯四元数
类似于纯虚数,即实部 w 为0的四元数

xi+yj+zk

单位四元数

  • 单位四元数(Unit quaternion)可以用于表示 三维空间里的旋转.
  • 它与常用的两种方式 三维正交旋转矩阵欧拉角 是等价的.
  • 可以避免了 欧拉角表示中的 万向锁 的问题.
  • 比起三维正交矩阵表示,四元数表示能够更方便地给出旋转的转轴与旋转角.

轴角表示的旋转

[x,y,z,theta]

前面三个表示轴,最后一个表示角度。

单位四元数算是由轴角转换来的

w = cos(theta/2)
x = ax * sin(theta/2)
y = ay * sin(theta/2)
z = az * sin(theta/2)

其中(ax,ay,az)表示 虚轴 的矢量,theta表示绕此轴的旋转角度

三维旋转:欧拉角、四元数、旋转矩阵、轴角之间的转换

三维旋转:欧拉角、四元数、旋转矩阵、轴角之间的转换

总结

四元数的优点

  • 使用四元数来串联 “旋转”. 要比使用矩阵快得多.
  • 从四元数转换到矩阵,要比从欧拉角转换到矩阵快一点
  • 四元数只需要4个数字(如果旋转四元数已经单位化了那么只需要3个,实数部分可以在运行时计算)来表示一个旋转,而矩阵需要至少9个数字

四元数的缺点

  • 因为浮点数的舍入运算错误,四元数可能会变无效。不过,这个错误可以通过重新单位化四元数来避免。
  • 使用四元数最具威慑性的地方,还是四元数的理解难度大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值