数学分析(十四)-幂级数2-函数的幂级数展开2-初等函数的幂级数/泰勒展开式5:f(x)=(1+x)ᵃ【只有少数简单函数的幂级数展开式能直接从定义出发求出】【更多是从已知展开式出发间接求得泰勒展开式】

本文详细讨论了函数f(x)=(1+x)α的幂级数展开,包括当α为正整数和非正整数时的不同情况。通过麦克劳林级数和比式判别法,得出收敛半径R=1,并证明在(-1,1)区间内幂级数收敛于(1+x)α。还探讨了不同α值时的收敛域,并指出通常幂级数展开式是通过已知展开式间接求得的。" 133396393,20015923,CentOS系统上编译安装MySQL及设置yum源教程,"['CentOS', 'MySQL', '数据库管理', '系统配置', '开源软件']
摘要由CSDN通过智能技术生成

例 6

讨论二项式函数 f ( x ) = ( 1 + x ) α f(x)=(1+x)^{\alpha} f(x)=(1+x)α 的展开式.

α \alpha α 为正整数时, 由二项式定理直接展开, 就得到 f f f 的展开式,这已在前面例 2 中讨论过.

下面讨论 α \alpha α 不等于正整数时的情形,这时

f ( n ) ( x ) = α ( α − 1 ) ⋯ ( α − n + 1 ) ( 1 + x ) α − n , n = 1 , 2 , ⋯   , f ( n ) ( 0 ) = α ( α − 1 ) ⋯ ( α − n + 1 ) , n = 1 , 2 , ⋯   . \begin{array}{c} f^{(n)}(x)=\alpha(\alpha-1) \cdots(\alpha-n+1)(1+x)^{\alpha-n}, \quad n=1,2, \cdots, \\[2ex] f^{(n)}(0)=\alpha(\alpha-1) \cdots(\alpha-n+1), \quad n=1,2, \cdots . \end{array} f(n)(x)=α(α1)(αn+1)(1+x)αn,n=1,2,,f(n)(0)=α(α1)(αn+1),n=1,2,.

于是 f ( x ) f(x) f(x) 的麦克劳林级数是

1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + ⋯   . ( 6 ) 1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}+\cdots . \quad(6) 1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+.(6)

运用比式判别法, 可得 (6) 的收敛半径 R = 1 R=1 R=1.

下面来证明 f ( x ) = ( 1 + x ) α f(x)=(1+x)^{\alpha} f(x)=(1+x)α 的麦克劳林级数 ( 6 ) (6) (6) ( − 1 , 1 ) (-1,1) (1,1) 上收敛于 ( 1 + x ) α (1+x)^{\alpha}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值