申明: 仅个人小记
看待矩阵有很多种不同的角度,当我们把矩阵看作是一种变换的时候,我认为矩阵对应的变换只有:拉伸和旋转。 A x ⃗ = y ⃗ A\vec{x}=\vec{y} Ax=y(可以用相关性来辅助我想表达的意思,拉伸和旋转是互相独立的,即拉伸能做的旋转不一定能做到,而旋转能做的拉伸不一定能做到。补充:投影则只是当拉伸比例为0时的一个特例。我的意思就是矩阵的所能产生的所有变换都是可以有拉伸和旋转混合而得到)。
注: 本文只探讨拉伸变换部分
Q: 为什么总是看到n个线性无关的特征向量这种字眼?
因为n个线性无关的特征向量可以完备的构建出n维空间。
####一、矩阵得到特征向量进而分析矩阵的变换内容
注: 本段讨论都是基于n个线性无关的特征向量存在的情况。
矩阵A有n个线性无关的特征向量,记为
ξ
1
⃗
,
ξ
2
⃗
,
.
.
.
,
ξ
n
⃗
\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}
ξ1,ξ2,...,ξn相应的特征值(可以有重根)为,
λ
1
,
λ
2
,
.
.
.
,
λ
n
\lambda_1,\lambda_2,...,\lambda_n
λ1,λ2,...,λn取任意一个n维向量
x
⃗
\vec{x}
x,因为
ξ
1
⃗
,
ξ
2
⃗
,
.
.
.
,
ξ
n
⃗
\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}
ξ1,ξ2,...,ξn是n个线性无关的特征向量,所以必然可以撑起一个有n个n维向量构成的完备的n维空间。所以必然向量
x
⃗
\vec{x}
x可以由
ξ
1
⃗
,
ξ
2
⃗
,
.
.
.
,
ξ
n
⃗
\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}
ξ1,ξ2,...,ξn这n个线性无关的特征向量进行线性表示,记为
x
⃗
=
k
1
ξ
1
⃗
+
k
2
ξ
2
⃗
+
.
.
.
+
k
3
ξ
n
⃗
\vec{x}= k_1\vec{\xi_1}+k_2\vec{\xi_2}+...+k_3\vec{\xi_n}
x=k1ξ1+k2ξ2+...+k3ξn我们现在来看待
A
x
⃗
=
y
⃗
A\vec{x}=\vec{y}
Ax=y
即为,
A
(
k
1
ξ
1
⃗
+
k
2
ξ
2
⃗
+
.
.
.
+
k
3
ξ
n
⃗
)
=
λ
1
k
1
ξ
1
⃗
+
λ
2
k
2
ξ
2
⃗
+
.
.
.
+
λ
n
k
n
ξ
n
⃗
=
y
⃗
A(k_1\vec{\xi_1}+k_2\vec{\xi_2}+...+k_3\vec{\xi_n})=\lambda_1k_1\vec{\xi_1}+\lambda_2k_2\vec{\xi_2}+...+\lambda_nk_n\vec{\xi_n}=\vec{y}
A(k1ξ1+k2ξ2+...+k3ξn)=λ1k1ξ1+λ2k2ξ2+...+λnknξn=y
这个式子非常清晰的告诉我们矩阵A对向量
x
⃗
\vec{x}
x到底做了什么进而变为向量
y
⃗
\vec{y}
y,就是在
x
⃗
\vec{x}
x在
ξ
1
⃗
,
ξ
2
⃗
,
.
.
.
,
ξ
n
⃗
\vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n}
ξ1,ξ2,...,ξn上的各个分量,分别做
λ
1
,
λ
2
,
.
.
.
,
λ
n
\lambda_1,\lambda_2,...,\lambda_n
λ1,λ2,...,λn这样程度的拉伸。
注意到, x ⃗ \vec{x} x是任意取的一个向量,即任意一个向量都可以由 x ⃗ \vec{x} x在 ξ 1 ⃗ , ξ 2 ⃗ , . . . , ξ n ⃗ \vec{\xi_1},\vec{\xi_2},...,\vec{\xi_n} ξ1,ξ2,...,ξn线性组合而得到,矩阵A的变换统统都是在这组基上的拉伸动作而已。所以,可以说矩阵A是对原有空间,基于找出的特征向量,按相应的特征值对整个空间进行拉伸变换。
####二、根据想要的拉伸变换写出相应的矩阵
显然,我们实际处理中,会常常遇到自己想要进行一种变换,如果是简单的还好,稍微复杂的就不太好搞定了。而这种问题实际上就是对上面讨论的一个逆向,并不难。
举例:我想对n维度空间进行一种拉伸变换,具体是想沿着
α
1
⃗
,
α
2
⃗
,
.
.
.
,
α
n
⃗
\vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_n}
α1,α2,...,αn这n个线性无关的向量分别按
p
1
,
p
2
,
.
.
.
,
p
n
p_1,p_2,...,p_n
p1,p2,...,pn比例进行拉伸。相应的变换矩阵是什么呢?
A
x
⃗
=
y
⃗
A\vec{x}=\vec{y}
Ax=y欲把向量
x
⃗
\vec{x}
x变为
y
⃗
\vec{y}
y,变换矩阵A具体为多少?
因为
α
1
⃗
,
α
2
⃗
,
.
.
.
,
α
n
⃗
\vec{\alpha_1},\vec{\alpha_2},...,\vec{\alpha_n}
α1,α2,...,αn是n个线性无关的向量,所以向量
x
⃗
\vec{x}
x必然可以表示为
x
⃗
=
k
1
α
1
⃗
+
k
2
α
2
⃗
+
.
.
.
+
k
n
α
n
⃗
\vec{x}=k_1\vec{\alpha_1}+k_2\vec{\alpha_2}+...+k_n\vec{\alpha_n}
x=k1α1+k2α2+...+knαn写成矩阵形式为,
x
⃗
=
[
α
1
⃗
α
2
⃗
.
.
.
α
n
⃗
]
[
k
1
k
2
.
.
.
k
n
]
\vec{x}=\begin {bmatrix} \vec{\alpha_1}&\vec{\alpha_2}&...&\vec{\alpha_n}\end {bmatrix}\begin {bmatrix}k_1\\k_2\\.\\.\\.\\k_n \end {bmatrix}
x=[α1α2...αn]⎣⎢⎢⎢⎢⎢⎢⎡k1k2...kn⎦⎥⎥⎥⎥⎥⎥⎤
[
k
1
k
2
.
.
.
k
n
]
=
[
α
1
⃗
α
2
⃗
.
.
.
α
n
⃗
]
−
1
x
⃗
\begin {bmatrix}k_1\\k_2\\.\\.\\.\\k_n \end {bmatrix}={\begin {bmatrix} \vec{\alpha_1}&\vec{\alpha_2}&...&\vec{\alpha_n}\end {bmatrix}}^{-1}\vec{x}
⎣⎢⎢⎢⎢⎢⎢⎡k1k2...kn⎦⎥⎥⎥⎥⎥⎥⎤=[α1α2...αn]−1x依据想要的变换,变换结果向量
y
⃗
\vec{y}
y必然如下,
y
⃗
=
p
1
k
1
α
1
⃗
+
p
2
k
2
α
2
⃗
+
.
.
.
+
p
n
k
n
α
n
⃗
\vec{y}=p_1k_1\vec{\alpha_1}+p_2k_2\vec{\alpha_2}+...+p_nk_n\vec{\alpha_n}
y=p1k1α1+p2k2α2+...+pnknαn写成矩阵形式为,
y
⃗
=
[
α
1
⃗
α
2
⃗
.
.
.
α
n
⃗
]
[
p
1
0
.
.
.
0
0
p
2
.
.
.
0
0
0
.
.
.
p
n
]
[
k
1
k
2
.
.
.
k
n
]
=
[
α
1
⃗
α
2
⃗
.
.
.
α
n
⃗
]
[
p
1
0
.
.
.
0
0
p
2
.
.
.
0
0
0
.
.
.
p
n
]
[
α
1
⃗
α
2
⃗
.
.
.
α
n
⃗
]
−
1
x
⃗
=
A
x
⃗
\vec{y}=\begin {bmatrix} \vec{\alpha_1}&\vec{\alpha_2}&...&\vec{\alpha_n}\end {bmatrix}\begin {bmatrix} p_1 & 0&...&0\\0&p_2&...&0\\0&0&...&p_n\end {bmatrix}\begin {bmatrix}k_1\\k_2\\.\\.\\.\\k_n \end {bmatrix}\\=\begin {bmatrix} \vec{\alpha_1}&\vec{\alpha_2}&...&\vec{\alpha_n}\end {bmatrix}\begin {bmatrix} p_1 & 0&...&0\\0&p_2&...&0\\0&0&...&p_n\end {bmatrix}{\begin {bmatrix} \vec{\alpha_1}&\vec{\alpha_2}&...&\vec{\alpha_n}\end {bmatrix}}^{-1}\vec{x}\\=A\vec{x}
y=[α1α2...αn]⎣⎡p1000p20.........00pn⎦⎤⎣⎢⎢⎢⎢⎢⎢⎡k1k2...kn⎦⎥⎥⎥⎥⎥⎥⎤=[α1α2...αn]⎣⎡p1000p20.........00pn⎦⎤[α1α2...αn]−1x=Ax即变换对应的变换矩阵为,
A
=
[
α
1
⃗
α
2
⃗
.
.
.
α
n
⃗
]
[
p
1
0
.
.
.
0
0
p
2
.
.
.
0
0
0
.
.
.
p
n
]
[
α
1
⃗
α
2
⃗
.
.
.
α
n
⃗
]
−
1
A=\begin {bmatrix} \vec{\alpha_1}&\vec{\alpha_2}&...&\vec{\alpha_n}\end {bmatrix}\begin {bmatrix} p_1 & 0&...&0\\0&p_2&...&0\\0&0&...&p_n\end {bmatrix}{\begin {bmatrix} \vec{\alpha_1}&\vec{\alpha_2}&...&\vec{\alpha_n}\end {bmatrix}}^{-1}
A=[α1α2...αn]⎣⎡p1000p20.........00pn⎦⎤[α1α2...αn]−1
稍微注意一下,矩阵相似对角化是完全融入上述提到内容的,所以上述内容也顺道解释了矩阵相似对角化为什么要求存在n个线性无关的特征向量这个充分必要条件。
补充:(涉及到旋转,此处不深究)
情况:二重特征根只有1个线性无关的特征向量
这时,这个矩阵必然引入了非拉伸动作,本文认为是旋转动作,而特征向量、特征值只是用于表现拉伸动作的,不能对旋转动作进行表示,所以,导致找不到剩余的特征向量。举例:
A
=
[
−
1
1
0
−
4
3
0
1
0
2
]
A=\begin {bmatrix}-1&1&0\\-4&3&0\\1&0&2 \end {bmatrix}
A=⎣⎡−1−41130002⎦⎤$ \lambda_1=\lambda_2=1
相
应
特
征
向
量
只
有
一
个
为
相应特征向量只有一个为
相应特征向量只有一个为
p
1
⃗
=
(
−
1
−
2
1
)
\vec{p_1}=\begin {pmatrix} -1\\-2\\1\end {pmatrix}
p1=⎝⎛−1−21⎠⎞KaTeX parse error: Can't use function '$' in math mode at position 12: \lambda_3=2$̲相应特征向量为\vec{p_2}=\begin {pmatrix} 0\0\1\end {pmatrix}KaTeX parse error: Can't use function '$' in math mode at position 21: …垂直于这两个特征向量的一个向量$̲\vec{v}=\begin …\vec{x}=k_1\vec{p_1}+k_2\vec{p_2}+k_2\vec{v}
进
而
有
,
进而有,
进而有,A\vec{x}=A(k_1\vec{p_1}+k_2\vec{p_2}+k_2\vec{v})=\lambda_1k_1\vec{p_1}+\lambda_2k_2\vec{p_2}+Ak_2\vec{v}\=k1\begin {pmatrix} -1\-2\1\end {pmatrix}+2k_2\begin {pmatrix} 0\0\1\end {pmatrix}+k_3A\vec{v}$$
首先 A v ⃗ A\vec{v} Av绝对不可能是纯粹的拉伸,因为如果是纯粹的拉伸,那么一定可以写成 A v ⃗ = λ v ⃗ A\vec{v}=\lambda\vec{v} Av=λv,显然,特征向量只能求出两个, v ⃗ \vec{v} v不可能充当第3个特征向量。我个人观察,发现 A v ⃗ A\vec{v} Av的呈现的效果是旋转+拉伸,涉及到旋转,本人能力有限,暂且不讨论。
