每天一篇论文 332/365 Visual Semantic SLAM with Landmarks for Large-Scale Outdoor Environment

Visual Semantic SLAM with Landmarks for Large-Scale Outdoor Environment
每天一篇论文汇总list
[Code](
摘要

-语义SLAM是自主驾驶和智能代理中的一个重要领域,它能使机器人实现高层次的导航任务,获得简单的认知或推理能力,实现基于语言的人机交互。本文将ORB-SLAM[1]、[2]的三维点云与PSPNet-101[3]卷积神经网络模型的语义分割信息相结合,建立了一个大规模环境下的语义三维地图生成系统。此外,还建立了一个新的KITTI[4]序列数据集,该数据集包含了序列相关街道上Google地图上的GPS信息和地标标签。此外,我们还找到了一种将现实世界中的地标与点云地图相关联的方法,并建立了一个基于语义地图的拓扑地图。索引项语义SLAM,视觉SLAM,大规模SLAM,语义分割,地标级语义映射。

贡献

在语义上,我们将建筑地标与语义点云。我们将从Google地图获得的地标与我们的城市区域导航语义3D地图相关联。它可以在不需要GPS信息的情况下实现基于地标的再定位。
•我们开发了一个系统,通过将视觉SLAM地图与大规模环境的语义分割信息融合,构建一个语义3D地图。
•我们为KITTI[4]序列开发了一个新的数据集,包含序列相关街道上谷歌地图上的GPS信息和地标标签。
•我们开发了一种将现实世界的地标与点云地图相关联的方法,并构建了一个基于语义地图的拓扑地图。

方法

首先,采用基于CNN的分割算法对图像进行分割。像素级语义映射结果和当前帧将被发送到SLAM系统进行环境重建。利用ORB-SLAM重建几何环境,利用当前帧中的角点球特征生成点云。在SLAM系统中,利用贝叶斯更新规则将像素级的语义信息与地图点相关联,更新一帧中每个观测点的概率分布。然后地标将被投影到SLAM地图中,并与SLAM系统中保存的最近的关键帧相关联。无需GPS信息,地图可以重新利用,进行地标级定位。我们还提供了为每个地标建立拓扑可达关系的方法,这将更方便机器人实现地标级的自导航。
在这里插入图片描述

结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 回答1: randla-net是一种高效的大规模点云语义分割方法。它采用了一种新颖的点云降采样方法,可以在保持点云形状信息的同时大大减少点云数量。此外,它还使用了一种基于局部区域的特征提取方法,可以有效地捕捉点云中的局部特征。最终,randla-net可以在保持较高分割精度的同时,大大提高分割速度。 ### 回答2: Randla-Net是一种高效的大规模点云语义分割方法,它利用深度学习方法实现对三维点云数据中物体的自动识别和分类。在智能驾驶、金字塔建设、城市规划和3D建模等领域,点云数据已经成为一种重要的数据形式。在处理点云数据时,常常需要对点云中的各种物体进行语义分割,划分出物体的类别和边界,以进一步进行场景分析和建模。 Randla-Net的关键思想是将点云数据转换成局部规则网格(LHG)型式,然后对规则网格应用神经网络模型,实现对点云的语义分割。相较于传统的点云分割方法,Randla-Net的解决方案更加高效,并且能够适应大规模点云数据的处理。具体来说,Randla-Net采用的局部规则网格可以大大减少点云数据的复杂性,减少无效数据的计算,同时保证点云数据与原始数据的对应性。神经网络模型的引入能够提高计算的全局一致性,并在语义分割中对局部特征和位置被高效获取。此外,Randla-Net融合了RANDomized LAyered points(简称RANDLA)的思想,可以抽取多级别多方向的特征,使得点云数据在语义分割中的处理更加准确。 总之,Randla-Net是一种快速、有效、准确的大规模点云语义分割方法,其优点在于可以处理复杂的大规模点云数据,同时在语义分割中能够提供更高的计算效率和更精确的结果。它的应用将会推动点云技术的发展,为智能驾驶、建筑、机器人、VR/AR等领域提供更加精确的三维场景建模工具。 ### 回答3: RandLA-Net是一种高效而准确的点云语义分割神经网络,专为应对大规模点云场景而开发。该网络的核心功能在于通过快速地对点云数据进行聚类、降采样和投影等操作,实现了对点云进行语义分割,并能够输出详细的分割结果。 RandLA-Net相对于传统点云语义分割算法的优势在于,该算法不但能够处理大规模点云数据,同时还利用了矩阵分解的方法来提高运行速度。因此,该算法在极端情况下也能实现快速和准确的分割,如在不同分辨率、不同大小和不同密度的点云数据上。 RandLA-Net的另一个创新点在于使用了自适应滑动窗口的方法,就是通过分析点云的特征分布,来自动选择和匹配最适宜的窗口大小,以此进一步提高分割效果。同时,该算法还考虑到了实际应用场景中存在的地面、建筑物等不同的目标物体,对各自进行分割和处理,以期达到更高的准确率。 总的来说,RandLA-Net是一种高效、准确、可扩展的神经网络,为卫星、城市规划、无人驾驶等领域提供了强大的支持。该算法的研究提供了新的思路,为点云语义分割界的研究者提供了很好的启示,也为工业界解决实际问题提供了新的思路。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值