GEE案例——森林损失面积逐年统计分析(汉森森林数据集)

该博客利用谷歌地球引擎(GEE)的汉森森林损失数据集,展示如何统计2002年至2022年间每年的森林损失面积。通过ee.Image.pixelArea()、reduceRegion()等函数,配合if条件语句,进行数据处理和分析。结合卫星遥感与实地考察方法,提供全面的森林损失信息。
摘要由CSDN通过智能技术生成

简介:

我们使用汉森森林损失数据集来统计森林面积的损失年份来产看每年的说呢林损失面积。整体只需要一个for循环,因为这里我们已经直到可以统计2002-2022年的森林损失,因此只需要进行转化成矢量来统计即可。同时在代码编写过程中,我们可以设定不同的情况,因为一旦通过外部引入一些时间序列到循环当中,就会出席那json格式,所以这里我们需要进行内部的if条件语句来设定结果。

森林损失的统计通常基于卫星遥感和实地考察这两种方法:

1. 卫星遥感:利用遥感卫星获取的数据和影像技术,可以检测到森林覆盖率和森林的变化。这些数据和影像可以被用于分析和评估森林面积、植被类型和变化情况。这种方法常用于大规模的监测和评估,但需要识别森林和非森林地区之间的界限。

2. 实地考察:通过实地考察和调查采样,可以确定森林面积和森林健康情况。这种方法可以提供更准确的数据,但是耗费人力、财力和时间,只可用于小范围的森林调查。

当这两种方法结合使用时,可以得到最完整、最准确的森林损失数据。

数据:

对大地遥感卫星图像进行时间序列分析以确定全球森林范围和变化特征的结果。

第一个 "和 "最后一个 "波段是大地遥感卫星光谱波段(红、近红外、SWIR1 和 SWIR2)的第一个和最后一个可用年份的参考多光谱图像。参考复合图像代表了这些波段中每个波段的生长季节质量评估观测数据集的中值观测数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值