GEE数据集——GLC_FCS30D - 全球 30 米土地覆被变化数据集(1985-2022 年)

GLC_FCS30D - 全球 30 米土地覆被变化数据集(1985-2022 年)



本数据集是正在提交的论文的一部分,因此没有引用和 DOI 信息。请在使用本数据集时注意这一点。

GLC_FCS30D 数据集是全球土地覆被监测领域的一项开创性进展,它以 30 米的分辨率全面揭示了从 1985 年到 2022 年期间的土地覆被动态。GLC_FCS30D 采用连续变化探测方法开发,利用了谷歌地球引擎平台中大量的陆地卫星图像档案,包括 35 个土地覆被子类别和 26 个时间步长,2000 年之前每五年更新一次,之后每年更新一次。通过严格的完善过程,包括时空分类和时间一致性优化,该数据集实现了高置信度的准确性,经过 84,000 多个全球样本的验证,总体准确率达到 80.88%。值得注意的是,GLC_FCS30D 阐明了重要趋势,揭示了森林和耕地变化是过去 37 年全球土地覆被变化的主要驱动因素,森林净损失约 250 万平方公里,耕地面积净增加约 130 万平方公里。GLC_FCS30D 具有多样化的分类系统、高空间分辨率和广泛的时间覆盖范围,是气候变化研究和可持续发展分析的宝贵资源。前言 – 人工智能教程

 

GLC_FCS30D 是首个采用连续变化探测技术的 30 米分辨率全球精细土地覆被动态产品。它采用了一套包含 35 个土地覆被类别的精细分类系统,时间跨度为 1985 年至 2022 年。2000 年之前,更新周期为每 5 年一次,2000 年之后,更新周期为每年一次。具体而言,该系统结合了连续变化检测方法、局部自适应更新模型和来自密集时间序列大地遥感卫星图像的时空优化算法,经过验证,基本分类系统(10 个主要土地覆被类型)的总体精度为 80.88%(±0.27%),LCCS 一级验证系统(17 个 LCCS 土地覆被类型)的总体精度为 73.24%(±0.30%)。

数据链接

GLC_FCS30D: the first global 30-m land-cover dynamic monitoring product with fine classification system from 1985 to 2022

土地分类类型

展开以显示土地覆被等级、RGB 值和十六进制代码

LC IdClassification SystemRGB valueColor
10Rainfed cropland(255,255,100)
11Herbaceous cover cropland(255,255,100)
12Tree or shrub cover (Orchard) cropland(255,255,0)
20Irrigated cropland(170,240,240)
51Open evergreen broadleaved forest(76,115,0)
52Closed evergreen broadleaved forest(0,100,0)
61Open deciduous broadleaved forest (0.15<fc<0.4)(170,200,0)
62Closed deciduous broadleaved forest (fc>0.4)(0,160,0)
71Open evergreen needle-leaved forest (0.15< fc <0.4)(0,80,0)
72Closed evergreen needle-leaved forest (fc >0.4)(0,60,0)
81Open deciduous needle-leaved forest (0.15< fc <0.4)(40,100,0)
82Closed deciduous needle-leaved forest (fc >0.4)(40,80,0)
91Open mixed leaf forest (broadleaved and needle-leaved)(160,180,50)
92Closed mixed leaf forest (broadleaved and needle-leaved)(120,130,0)
120Shrubland(150,100,0)
121Evergreen shrubland(150,75,0)
122Deciduous shrubland(150,100,0)
130Grassland(255,180,50)
140Lichens and mosses(255,220,210)
150Sparse vegetation (fc<0.15)(255,235,175)
152Sparse shrubland (fc<0.15)(255,210,120)
153Sparse herbaceous (fc<0.15)(255,235,175)
181Swamp(0,168,132)
182Marsh(115,255,223)
183Flooded flat(158,187,215)
184Saline(130,130,130)
185Mangrove(245,122,182)
186Salt marsh(102,205,171)
187Tidal flat(68,79,137)
190Impervious surfaces(195,20,0)
200Bare areas(255,245,215)
201Consolidated bare areas(220,220,220)
202Unconsolidated bare areas(255,245,215)
210Water body(0,70,200)
220Permanent ice and snow(255,255,255)
0, 250Filled value(255,255,255)

 数据集后处理


数据集由约 961 个图层组成,年度图层由约 23 年的图像组成,每个波段代表从 2000 年开始的一年,5 年图层从 1985 年开始,3 个波段代表 5 年的间隔,因此 1985-1990 年为 b1,1990-1995 年为 b2,1990-2000 年为 b3。

论文引用

Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., and Liu, L.: GLC_FCS30D: The first global 30-m land-cover dynamic monitoring product with
a fine classification system from 1985 to 2022 using dense time-series Landsat imagery and continuous change-detection method, Earth Syst. Sci. Data
Discuss. [preprint], https://doi.org/10.5194/essd-2023-320, in review, 2023.

数据引用

Liangyun Liu, Xiao Zhang, & Tingting Zhao. (2023). GLC_FCS30D: the first global 30-m land-cover dynamic monitoring product with fine classification
system from 1985 to 2022 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8239305

数据集代码

var annual = ee.ImageCollection("projects/sat-io/open-datasets/GLC-FCS30D/annual");
var five_year = ee.ImageCollection("projects/sat-io/open-datasets/GLC-FCS30D/five-years-map");

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:global-landuse-landcover/GLC-FCS30D

License

This work is licensed under and freely available to the public under Creative Commons Attribution 4.0 International license.

Created by: Zhang et al. 2023

Curated in GEE by : Samapriya Roy

Keywords: GLC_FCS30D, 1985-2022, Land-cover change, Landsat, change detection, Google Earth Engine

Last updated in GEE: 2024-02-20

 

### 如何下载 GLC_FCS GEE 工具或相关资源 为了获取并使用GLC_FCS (Global Land Cover at 30m resolution from the Fusion of Multi-sensor Data) 数据集以及其关联工具,在Google Earth Engine平台上的操作流程如下: #### 使用 Google Earth Engine 获取 GLC_FCS 数据 可以直接访问Google Earth Engine Code Editor中的特定脚本路径来加载此数据集。对于GLC_FCS而言,可以通过指定的用户目录找到对应的代码文件[^1]。 ```javascript // 加载GLC_FCS数据集 var dataset = ee.ImageCollection('projects/sat-io/open-datasets/glc_fcs'); Map.addLayer(dataset, {}, 'GLC FCS', false); print(dataset); ``` 这段JavaScript代码展示了如何在Earth Engine环境中调用GLC_FCS图像集合,并将其添加至地图层以便可视化查看。 #### 下载本地处理的数据 如果希望将经过初步处理后的GLC_FCS数据导出到本地环境,则可以在完成必要的预处理之后利用`Export.image.toDrive()`函数实现这一目标。这允许用户自定义输出参数如比例尺、区域范围等。 ```javascript // 定义感兴趣的地理区域 var region = /* AOI */; // 导出选定区域内重投影后的影像至Google Drive Export.image.toDrive({ image: dataset.first().clip(region), description: 'glc_fcs_export', scale: 30, region: region }); ``` 上述方法适用于那些希望通过编程方式批量下载大量栅格数据的研究人员和技术爱好者们。 #### 关于其他辅助资料和工具 除了直接从GEE平台上获得最新版本的土地覆盖产品外,还有额外提供的压缩包形式的支持材料可供下载[^2]。这些可能包含了用于离线分析的地图样式表或其他补充说明文档。 需要注意的是,尽管存在一些社区贡献者分享了个人编写的读取这类数据的方法[^4],但官方尚未提供标准化的应用实例供开发者参考。因此建议密切关注项目主页更新动态以获取更多支持。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值