视觉SLAM笔记(58) 字典

本文介绍了视觉SLAM中字典的结构和创建过程,字典生成是一个聚类问题,通常使用K-means算法。讨论了K-means的工作原理、效率问题以及层次聚类等改进方法。还讲述了如何通过k叉树结构提高查找效率,并展示了使用ORB特征创建字典的实践操作,包括DBoW3库的使用和字典存储。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视觉SLAM笔记(58) 字典


1. 字典的结构

按照前面的介绍,字典由很多单词组成,而每一个单词代表了一个概念
一个单词与一个单独的特征点不同
它不是从单个图像上提取出来的,而是某一类特征的组合
所以,字典生成问题类似于一个 聚类(Clustering)问题

聚类问题是无监督机器学习(Unsupervised ML)中一个特别常见的问题
用于让机器自行寻找数据中的规律的问题
BoW 的字典生成问题亦属于其中之一

首先,假设对大量的图像提取了特征点,比如说有 N 个
现在,想找一个有 k 个单词的字典,每个单词可以看作局部相邻特征点的集合
这可以用经典的 K-means(K 均值)算法解决
K-means 是一个非常简单有效的方法,因此在无监督学习中广为使用

简单来说,当有 N 个数据,想要归成 k 个类
那么用 K-means 来做,主要有以下几个步骤:
在这里插入图片描述

K-means 的做法是朴素且简单有效的࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氢键H-H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值