1. 字典的结构
按照前面的介绍,字典由很多单词组成,而每一个单词代表了一个概念
一个单词与一个单独的特征点不同
它不是从单个图像上提取出来的,而是某一类特征的组合
所以,字典生成问题类似于一个 聚类(Clustering)问题
聚类问题是无监督机器学习(Unsupervised ML)中一个特别常见的问题
用于让机器自行寻找数据中的规律的问题
BoW 的字典生成问题亦属于其中之一
首先,假设对大量的图像提取了特征点,比如说有 N 个
现在,想找一个有 k 个单词的字典,每个单词可以看作局部相邻特征点的集合
这可以用经典的 K-means(K 均值)算法解决
K-means 是一个非常简单有效的方法,因此在无监督学习中广为使用
简单来说,当有 N 个数据,想要归成 k 个类
那么用 K-means 来做,主要有以下几个步骤:
K-means 的做法是朴素且简单有效的