道路分割:Leveraging Topology for Domain Adaptive Road Segmentation in Satellite and Aerial Imagery

本文提出了一种针对遥感图像的道路分割方法,利用拓扑约束和一致性损失,有效提高道路和骨架预测的准确性。实验结果显示,新方法在SpaceNet到DeepGlobe的数据迁移中,性能优于现有技术,尤其是在IoU、F1-score和APLS指标上有显著提升。
摘要由CSDN通过智能技术生成

论文作者:Javed Iqbal,Aliza Masood,Waqas Sultani,Mohsen Ali

作者单位:Information Technology University

论文链接:http://arxiv.org/abs/2309.15625v1

内容简介:

1)方向:道路分割

2)应用:无人驾驶、城市发展规划、可持续发展目标等应用领域。

3)背景:从遥感图像中准确分割道路的技术对于诸如自动驾驶汽车、城市发展规划以及实现可持续发展目标等许多实际应用非常有用。然而,道路只是图像的一小部分,其外观、类型、宽度、高程、方向等在地理区域之间存在较大的变化。由于城市化风格、规划和自然环境的差异,沿着道路的各个区域也会显著变化。

4)方法:本文提出一种针对远程感知图像中道路分割的拓扑感知无监督领域自适应方法。具体而言,通过预测道路骨架作为辅助任务来施加拓扑约束。为了强制在未标记的目标领域中保持对道路和骨架的一致预测,定义了跨骨架预测头和道路分割头之间的一致性损失。此外,为了进行自训练,使用基于连通性的伪标签精化策略来过滤掉噪声伪标签,分别在道路和骨架分割头上进行操作,从而避免了孔洞和不连续性。

5)结果:在基准数据集上进行了大量实验证明了所提方法相对于现有最先进方法的有效性。特别是对于SpaceNet到DeepGlobe的自适应,该方法在IoU、F1-score和APLS方面的性能分别比竞争方法提高了最少6.6%、6.7%和9.8%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值