3dmath 空间2根直线的交点

首先具备点到直线的距离点的求解能力,不会点到直线的距离的请看

https://blog.csdn.net/qq_35267906/article/details/91954743

已知:直线p1p2,和直线p3p4求这2根空间直线的交点。

 

 这里求证了2个直线的交点,但前提条件是2个直线必须在同个平面才有交点。

 /// <summary>
        /// 线与线的交点
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <param name="p3"></param>
        /// <param name="p4"></param>
        /// <returns>-1 重合,0 没有交点,1 一个交点</returns>
        public static int LineToLinePoint(Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4, out Vector3 rp1,out Vector3 rp2)
        {
            //线判断线是不是平行
            rp1 = null;
            rp2 = null;
            Vector3 n1 = (p2 - p1).Normalized();
            Vector3 n2 = (p4 - p3).Normalized();
            if (System.Math.Abs(Dot(n1, n2)) == 1)
            {
                //平行
                if (System.Math.Abs(Dot(p3 - p1, n2)) == 1 || p3 == p1)
                {
                    //重合
                    rp1 = p1;
                    rp2 = p2;
                    return -1;
                }
                else
                {                   
                    return 0;
                }
            }
            
            Vector3 pn = PointToLineDistancePoint(p1, p2, p3);
            //判断是不是在一个平面
            Vector3 f1 = Cross(n1, n2).Normalized();
            Vector3 f2 = Cross((p3 - p1).Normalized(), n2).Normalized();
            if (System.Math.Abs(Dot(f1, f2)) != 1 && p3 != p1)
            {
                return 0;
            }
            float L = (pn - p3).modular / Dot(n2.Normalized(), (pn - p3).Normalized());
            rp1 = p3 + L * n2;
            return 1;
        }

里面处理了平行和重合的情况,和判断是不是在一个平面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值