相机噪声

一、什么是图像噪声?
噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。

二、噪声来源—两个方面
(1)图像获取过程中

两种常用类型的图像传感器CCD和CMOS采集图像过程中,由于受传感器材料属性、工作环境、电子元器件和电路结构等影响,会引入各种噪声,如电阻引起的热噪声、场效应管的沟道热噪声、光子噪声、暗电流噪声、光响应非均匀性噪声。

(2)图像信号传输过程中

由于传输介质和记录设备等的不完善,数字图像在其传输记录过程中往往会受到多种噪声的污染。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。

三、常见噪声介绍

在raw image中,主要的噪声为两种,高斯噪声和散粒噪声(泊松噪声),其中,高斯噪声是与光强没有关系的噪声,无论像素值是多少,噪声的平均水平(一般是0)不变。另一种是散粒噪声,因为其符合泊松分布,又称为泊松噪声,下图可见,泊松噪声随着光强增大,平均噪声也增大。
在这里插入图片描述
还有乘性噪声,椒盐噪声。

散粒噪声

量子涨落
​ 介绍散粒噪声之前需要介绍一下量子涨落,量子这两个字听起来很神奇,让人望而却步,那就先讨论一下涨落。涨落出现在测量中,中学的时候,大家应该记得老师在教我们使用游标卡尺等测量工具的时候都会叫我们多测量几次,取平均值。事实上,每一次的测量都会对测量的平均值(可以将这个平均值看作是真实值)产生一定的偏差,这就是涨落。

​ 量子涨落也是一种涨落,也就是对平均值的偏差,当然这是发生在量子世界的。在量子力学中,一个粒子出现的位置是不确定的,通常是通过一个概率去描述,在量子力学中成为波函数。

散粒噪声是什么
​ 之前已经介绍过量子涨落,简单总结一下就是一个粒子(这里我们考虑的是光子)会出现的位置是不确定的,是通过概率,即波函数去描述的,正因为是概率性的事件,所以会产生一定的涨落。

​ 比如一个光子可能出现在P1和P2位置,其概率分别为0.2和0.8,那么如果有10个光子,本来应该是2个在P1位置,8个在P2位置,但是存在量子涨落,P1只有1个光子,而P2有9个,那么实际情况与理论情况产生偏差,这个就是所谓的散粒噪声。

​ 总结一下,散粒噪声就是一系列的光子(注意光子是量子化的)按照一定的概率分布(波函数)撒到探测器上,由于量子涨落而形成的噪声。

散粒噪声=泊松噪声=shot noise=poisson noise

Shot noise存在的根本原因是因为光是由离散的光子构成(光的粒子性)。我们来看看光源发出的光是怎么在CMOS上面成像的。光源发出的光子打在CMOS上,从而形成一个可见的光点(简化成如下图所示,忽略光学元件和电路等)。光源每秒发射的光子到达CMOS的越多,则该像素的灰度值越大。但是因为光源发射和CMOS接收之间都有可能存在一些因素导致单个光子并没有被CMOS接收到或者某一时间段内发射的光子特别多,所以这就导致了灰度值会有波动,也就是所谓的散粒噪声。

2、高斯噪声

高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。

产生原因:

1)图像传感器在拍摄时市场不够明亮、亮度不够均匀;

2)电路各元器件自身噪声和相互影响;

3)图像传感器长期工作,温度过高。

3、乘性噪声

乘性噪声一般由信道不理想引起,它们与信号的关系是相乘,信号在它在,信号不在他也就不在。

4、椒盐噪声

椒盐噪声,椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。

椒盐噪声往往由图像切割引起。

### 模拟相机噪声处理方法 在模拟相机中,图像噪声是一个常见的问题。为了有效降低这些噪声并提高图像质量,可以从以下几个方面入手: #### 1. 原理分析 图像传感器产生的噪声主要包括固定模式噪声、热噪声以及光电转换过程中的散粒噪声等[^1]。理解这些噪声的特性有助于开发针对性更强的降噪算法。 #### 2. Raw域降噪的重要性 由于Raw数据位于ISP pipeline的前端,在这一阶段进行降噪具有显著优势。此时的数据尚未经过复杂的信号处理操作,因此其噪声分布相对简单且易于建模。通过构建精确的数学模型来描述不同类型的噪声行为,可以更有效地设计相应的滤波器或优化策略。 #### 3. 数学建模与算法应用 利用统计理论建立合适的概率密度函数(PDF),比如高斯混合模型(GMM)或者泊松-高斯复合模型,用于表征实际场景下的复杂噪声结构。随后采用贝叶斯估计框架推导出最优解形式,并结合具体应用场景调整参数设置以达到最佳效果。 另外还可以借鉴其他领域内的成熟技术成果应用于本课题研究当中。例如,在医学成像领域有学者提出了基于MATLAB平台实现荧光分子断层扫描(FMT)重建过程中去除背景干扰项的方法论思路——即先运用形态学术语定义目标区域边界条件再配合自适应阈值分割手段完成最终净化工作流程展示如下伪代码所示[^2]: ```matlab function denoisedImage = morphologyDenoise(inputImage) se = strel('disk', 2); % 定义结构元素 erodedImg = imerode(inputImage, se); dilatedImg = imdilate(erodedImg, se); filteredImg = medfilt2(dilatedImg,[3 3]); denoisedImage = wiener2(filteredImg,[5 5]); end ``` 上述脚本片段展示了如何综合使用腐蚀膨胀运算消除细小对象的同时保留较大连通分量轮廓特征;接着调用中值平滑进一步削弱残留高频扰动成分影响程度最后借助维纳滤波恢复原始细节纹理信息从而获得较为理想的视觉呈现效果。 #### 4. 实际案例分享 某知名厂商在其新一代产品线研发项目期间引入了一套全新的RAW级别实时预览功能模块设计方案。该方案充分利用了现代GPU强大的计算能力加速执行多尺度空间变换卷积核矩阵乘法运算步骤大幅缩短整体耗时指标表现优异满足商用需求标准同时兼顾成本控制因素考虑全面值得行业内外广泛学习参考推广价值极高。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值