正负样本的分配atss

1.FCOS
论文链接:https://arxiv.org/abs/1904.01355
代码链接:https://github.com/tianzhi0549/FCOS/

作为Anchor-free的方法,FOCS直接对feature map中每个位置对应原图的边框都进行回归,如果位置 (x,y) 落入任何真实边框,就认为它是一个正样本,它的类别标记为这个真实边框的类别。可以理解为他是基于物体的一个key point点进行回归的。在实际的anchor-free中也会遇到一些问题,为了解决这些问题,FCOS做了如下工作:

1)为了解决anchor-free的方式在真实边框重叠带来的模糊性和低召回率(不像anchor-based可以有多重不同尺寸的anchor),FCOS采用类似FPN中的多级检测,就是在不同级别的特征层检测不同尺寸的目标。
2)为了解决距离目标中心较远的位置产生很多低质量的预测边框,FCOS提出了一种简单而有效的策略来抑制这些低质量的预测边界框,而且不引入任何超参数。具体来说,FCOS添加单层分支,与分类分支并行,以预测"Center-ness",可以这这个理解成为一个度量值,于中心距离的一个度量值,与中心点较远,则度量值较低,与中心点越近,度量值越高,以此来让置信度更高的像素产生更高的贡献。

正负样本匹配方式的实现
Step1:分配目标给哪一层预测。 根绝目标的尺寸将目标分配到不同的特征层上进行预测。

具体实现:引入了min_size和max_size,具体设置是0, 64, 128, 256, 512和无穷大。例如,对于输出的第一个预测层而言,其stride=8,负责最小尺度的物体,对于该层上面的任何一个点,如果有gt bbox映射到特征图上,满足0 < max(中心点到4条边的距离) < 64,那么该gt bbox就属于第1层负责,其余层也是采用类似原则。总结来说就是第1层负责预测尺度在0~ 64范围内的gt,第2层负责预测尺度在64~128范围内的gt,以此类推。通过该分配策略就可以将不同大小的gt分配到最合适的预测层进行学习。

Step2:确定正负样本区域。 对于每一层feature map,设定一个以GT中心为圆心,固定半径的圆,如果像素落在该圆内,则标记为positive样本,否则为negative。

具体实现:通过center_sample_radius参数,确定在半径范围内的样本都属于正样本区域,其余区域作为负样本。默认配置center_sample_radius=1.5。例如,第1层的stride=8,那么在该输出层上,对于任何一个gt,基于gt bbox中心点为起点,在半径为1.5*8=12个像素范围内点都属于正样本区域。

Step3:centerness找到目标的中心点。 为了使靠近GT中心的像素能学到更多的信息,故给予他更高的权重,而离GT中心越远的点,贡献则递减。

具体实现:使得离目标中心越近,输出值越大,反之越小。Center-ness的定义如下公式:

可见最中心的点的centerness为1,距离越远的点,centerness的值越小。在推测的时候直接将中心度分数centerness乘到分类分数上,将偏离很远的检测框分值进行惩罚。

FCOS采用物体center的匹配方式来进行回归,在正负样本匹配的时候,采用了top-k的策略进行匹配,并且使用centerness来对不同距离的匹配样本进行不同程度的惩罚,以达到资源倾斜于贡献最佳者的目的。
2. CenterNet
论文地址:https://arxiv.org/pdf/1904.07850.pdf
代码:https://github.com/xingyizhou/C

Objects as Points这篇基于center的paper和FCOS有些相似,也是用中心点和宽高来表示一个物体,最大区别在于CenterNet使用的是物体的中心点。以及在实现正负样本分配的时候,引入高斯热图确定正负样本。

正负样本匹配方式的实现
CenterNet引入了高斯核来确定正负样本,将GT通过高斯核的方式分布到feature map上,然后根据像素点落到高斯分布的位置,基于相关的属性。在高斯核正中心的就是离GT的中心最近的点,包含在高斯核内的属于正样本,在高斯核以外的属于负样本。这些正样本中,离高斯核中心越近的正样本将被赋予较高的权重,随着高斯分布的逐渐向外,离中心越来越远,那么所能带来的贡献就逐渐减少,故赋予较低的权重。

3 ATSS
论文地址:https://arxiv.org/pdf/1912.02424.pdf
代码:https://github.com/sfzhang15/ATSS

ATSS这篇论文是同时适用于Anchor_based和Anchor_free的匹配方式,他先分析了Anchor_based的RetinaNet的anchor匹配方式,然后分析了基于Anchor_free的FCOS的匹配方式,发现两者之间的差异主要出现在正负样本的匹配差异上,如果完全使用相同的正负样本,则两者的性能最终会相差无几。故,文章提出了一种基于GT的相关特征自动选择正负样本的方法,来达到SOTA的效果。

正负样本匹配方式的实现
对于每个输出的检测层,计算每个anchor的中心点(anchor free的话,则是像素点,以下类似)和GT的中心点的距离;
选取K个anchor中心点离目标中心点最近的anchor为候选正样本(candidate positive samples);
计算每个候选正样本和GT之间的IOU ,计算这组IOU的均值和标准差
根据标准差和均值,设置选取正样本的阈值

选择阈值大于 的候选框最为最后的输入,进入训练。
https://www.jianshu.com/p/ce799ecb4803

1.CenterPoint
《Center-based 3D Object Detection and Tracking》
论文链接:https://arxiv.org/pdf/2006.11275
代码链接:https://github.com/tianweiy/CenterPoint

2.AutoAssign
《AutoAssign: Differentiable Label Assignment for Dense Object Detection》
论文链接:https://arxiv.org/pdf/2007.03496
代码链接:None

3.OTA
《OTA: Optimal Transport Assignment for Object Detection》
论文链接:https://arxiv.org/abs/1904.01355
代码链接:https://github.com/Megvii-BaseDetection/OTA

https://blog.csdn.net/yanghao201607030101/article/details/116134350
https://zhuanlan.zhihu.com/p/394392992
https://megvii.blog.csdn.net/article/details/118741306?utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.essearch_pc_relevant&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.essearch_pc_relevant
ref
[1] https://zhuanlan.zhihu.com/p/265339343
[2]https://zhuanlan.zhihu.com/p/63868458
[3]https://zhuanlan.zhihu.com/p/353493445

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值