李群和李代数

0.参考链接

   ①视觉SLAM基础——李群和李代数
   ②如何通俗地解释李群和李代数的关系?
   ③李群与李代数+补充理解
   ④离散复习笔记——代数结构——幺元、零元、逆元——三个元

1.李群

1.0 李群从何而来

   通常其运动变化我们可以使用旋转加平移进行表示,即 P ′ = R P + t P'=RP+t P=RP+t。但是在实际中,我们时常想要知道这一微小的变化量,不能一直将每一次变化都记录下来,这时候就联想到了导数,表示的正是在某一点的一个变化率。可是对于平移 t t t来说,其是具有加法运算的,但是对于 R R R来说,两个旋转矩阵相加,是没有意义的,而且相加之后是破坏了旋转矩阵 R R T = E RR^T=E RRT=E的性质的。
   矩阵对于乘法是封闭的,即假设相机进行了两次连续的旋转,旋转矩阵分别为 R 1 R_{1} R1 R 2 R_{2} R2, 这两个矩阵相乘后得到的也是个旋转矩阵,表示了总的旋转。平移矩阵 t t t和旋转矩阵 R R R都是李群的一种,虽然其不具有加法运算,但是当把其映射到李代数空间上时,就具有了加法的性质,在李代数上进行加法计算后,或者说是导数运算后,再将其映射到对应的李群即可。

1.1 群的定义

   群(group)是一种集合加上一种运算的代数结构。把集合记为 A A A,运算记为 ⋅ \cdot ,群就可以记为 G = ( A , ⋅ ) G=(A,\cdot) G=(A,)。群结构保证了在群上的运算具有良好的性质。
  ​ 三维旋转矩阵构成了特殊正交群:
S O ( 3 ) = { R ∈ R 3 × 3 ∣ R R T = E , d e t ( R ) = 1 } SO(3)=\left\{ R \in \mathbb R^{3 \times 3} |RR^T=E,det(R)=1 \right\} SO(3)={RR3×3RRT=E,det(R)=1}
  ​ 三维变换矩阵构成了特殊欧氏群:
S E ( 3 ) = { T = [ R t 0 T 1 ] ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } SE(3)=\left\{ T=\begin{bmatrix} R& t \\ 0^T & 1\end{bmatrix} \in \mathbb R^{4 \times 4} | R \in SO(3),t \in \mathbb R^3\right\} SE(3)={T=[R0Tt1]R4×4RSO(3),tR3}
  也就是说,群的本质是对矩阵的性质描述!群是相同性质矩阵集合!
  因此,群应该满足封闭性、结合性、幺元、逆元四种特性,以特殊正交群为例,则对应:
  封闭性: A B ∈ S O ( 3 ) AB \in SO(3) ABSO(3)
  结合性: ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
  幺元: ∃ I ∈ , 使得 A I = I A = A {\exists} I \in,使得AI=IA=A I,使得AI=IA=A
  逆元: A B ∈ S O ( 3 ) AB \in SO(3) ABSO(3)使得 A A − 1 = A − 1 A = I AA^{-1}=A^{-1}A=I AA1=A1A=I

1.2李群的定义

   李群就是具有连续(光滑)性质的群。即具有群结构的光滑微分流形,其群作用与微分结构相容。
  想象你拿个杯子就可以在空间中以某个支点连续的旋转它,所以SO(3)它就是李群。如果你一般旋转一边移动它,也是连续的或者说光滑的运动,所以变换矩阵群SE(3)也是李群。
   回顾导数的定义,显然计算导数和进行更新时都要用到加法。但SO(3) 和SE(3) 上对矩阵加法的运算并不封闭。如果要继续采取这个迭代更新的策略势必要再想想办法,使得导数“可行”。而这就可以通过李群及其对应的李代数来实现。

2.李代数

2.0李代数空间

  凡是弯曲的我们都要将其线性化,也就是线性逼近,而等距同构的线性逼近就是Killing矢量场,并且我们会发现这些矢量场构成线性空间,实际上正是等距同构群在单位处的切空间。这比较容易想象,无穷小逼近就是只移动一点点时用向量去逼近,这里只移动一点点就是几乎不动的意思,而不动的等距同构就是单位元。关于矢量场,天然地就有代数运算李括号,于是得到新的代数结构——李代数。
  李群元素位于微分流形上,那么每一个李群元素处都可以有一个降一维的切空间。那么规定幺元处的切空间就是李代数,其他李群处的就是普通切空间。
在这里插入图片描述

2.1李代数定义

  每个李群都有与之对应的李代数。李代数描述了李群的局部性质。其定义为:李代数由一个集合 V V V, 一个数域 F F F和一个二元运算 [ , ] [,] [,], 组成。如果它们满足以下几条性质,则称为一个李代数。
  封闭性: ∀ X , Y ∈ V , [ X , Y ] ∈ V {\forall} X,Y \in V,[X,Y] \in V X,YV,[X,Y]V
  双线性: ∀ X , Y , Z ∈ V , a , b ∈ F {\forall} X,Y,Z \in V,a,b \in F X,Y,ZV,a,bF,有 [ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] , [ Z , a X + b Y ] = a [ X , Z ] + b [ Y , Z ] [aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[X,Z]+b[Y,Z] [aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[X,Z]+b[Y,Z]
  自反性: ∀ X ∈ V , [ X , X ] = 0 {\forall} X \in V,[X,X] = 0 XV,[X,X]=0
  雅可比等价: ∀ X , Y , Z ∈ V , [ X , [ Y , Z ] ] + [ Z , [ X , Y ] ] + [ Y , [ Z , X ] ] = 0 {\forall} X,Y,Z \in V,[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0 X,Y,ZV,[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值