视觉伺服的个人理解

  视觉伺服就是在已知系统(机器人)的期望状态 s ∗ s^* s的条件下,通过控制系统(机器人)的运动使得系统(机器人)的实际状态 s s s与期望状态之间的误差 e = s − s ∗ e=s-s^* e=ss小于固定的阈值,与传统的开环控制方法(已知初始状态和期望状态,规划好控制策略后直接执行,中间过程中不再调整)不同,视觉伺服是通过多次迭代的方式逐步缩小误差 e e e,也就是在执行过程中根据当前状态与期望状态之间的差异,不断更新控制策略。
  机器人的实际运行状态 s = [ m ( t ) , a ] s=[m(t),a] s=[m(t),a]是一个与图像测量值 m ( t ) m(t) m(t)和系统参数 a a a有关的函数,视觉伺服的设计主要就是在于 s s s的设计。经典的视觉伺服方法可以分为基于图像的视觉伺服控制(IBVS)和基于位置的视觉伺服控制(PBV
S),IBVS中 s s s由表示图像特征的变量构成,PBVS 中 s s s由表示相机姿态的变量构成。
  我们以eye in hand (也就是相机安装在机械臂上,相机状态和机械臂终端的状态相同)的IBVS为例,假设 s ∗ s^* s是恒定的,如我们希望让一个特征点处于图像中心,如下图
在这里插入图片描述
而当前的状态 s s s特征点处于偏离了图像中心,如下图
在这里插入图片描述
s s s的变化只与相机的运动有关,所以我们通过控制相机的运动,使得相机的状态 s s s变成期望状态 s ∗ s^* s
  确定了 s s s的构成方式之后,就是要设计控制方案了,最简单的控制方案就是速度控制,通过改变速度 v = ( v c , w c ) v=(v_c,w_c) v=(vc,wc) v c v_c vc表示线速度, w c w_c wc表示角速度,那么 s s s关于时间的导数和速度之间的关系可以表示为 s ˙ = L s v \dot{s}=L_sv s˙=Lsv L s L_s Ls称为图像雅可比矩阵,也称交互矩阵
  误差 e e e关于时间的导数和速度之间的关系为 e ˙ = L e v \dot{e}=L_ev e˙=Lev,因为 e = s − s ∗ e=s-s^* e=ss,且 s ∗ s^* s是与时间无关的常值,所以 L e = L s L_e=L_s Le=Ls,如果希望误差 e e e呈指数函数下降,也就是误差 e e e的导数与它自身相关,即 e ˙ = − λ e \dot{e}=-\lambda e e˙=λe,则 v = − λ L e + e v=-\lambda L_e^+e v=λLe+e L e + L_e^+ Le+表示 L e L_e Le的广义逆矩阵。实际情况中不能得到 L e + L_e^+ Le+或者 L e L_e Le的准确值,只能对其进行近似和估计,用 L e + ^ \hat{L_e^+} Le+^表示 L e + L_e^+ Le+的近似,则对于速度的控制方案可以表示为 v = − λ L e + ^ e = − λ L e + ^ ( s − s ∗ ) v=-\lambda \hat{L_e^+}e=-\lambda \hat{L_e^+}(s-s^*) v=λLe+^e=λLe+^(ss)
  假设特征点在相机坐标系中的坐标为 X = ( X , Y , Z ) X=(X,Y,Z) X=(X,Y,Z),图像物理坐标系中的坐标为 ( x , y ) (x,y) (x,y),像素坐标系中的坐标为 ( u , v ) (u,v) (u,v),则可以得到以下关系
在这里插入图片描述
计算上式关于时间的导数可得
在这里插入图片描述
特征点的速度和相机的速度之间满足以下对应关系
在这里插入图片描述
结合上面的式子可得
在这里插入图片描述

在这里插入图片描述
则图像雅可比矩阵 L x L_x Lx可以表示为
在这里插入图片描述
如果要控制一个6自由度的机械臂,就需要要求 L e + ^ \hat{L_e^+} Le+^的秩大于等于6,而一个特征点只能之多提供秩为2的雅可比矩阵,因此需要至少3个特征点,才能满足控制要求。而且雅可比矩阵中的 Z Z Z通常是未知的,需要通过估计的方式来获取。而视觉伺服的过程就是按照一定的时间间隔,不断根据当前状态估计 L e + ^ \hat{L_e^+} Le+^,计算出当前状态下的速度,然后在完成本次运动后再次根据更新后的状态估计 L e + ^ \hat{L_e^+} Le+^,计算下一个时间间隔内的速度,最终使得当前状态与期望状态之间的误差小于一定的阈值。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深视

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值