风驰电掣云端飘,相机无法对上焦
1.视觉伺服分类
控制量是在图像空间中推导得到还是在欧式空间中推导得到,视觉伺服又可以分类为基于位置(PBVS)和基于图像的(IBVS)视觉伺服。
2.视觉伺服中的坐标系
- 概述
世界坐标系W:用于测量(估计)飞机、机器人的位姿(位置和姿态)。
飞机机体坐标系B:最终运动控制量应转换到这个坐标系。
目标机体坐标系O:用于描述目标物体与相机间的位姿,用于描述相机坐标系和目标物体机体坐标系之间的位姿关系。
相机坐标系C:是推导IBVS最重要的坐标系。
图像坐标系I:是描述特征点运动状态的坐标系。
像素坐标系P:最终的图像数据最终以该坐标系的形式存储信息。 - 表示
W 即 world,表示世界坐标系,E即 end,表示末端坐标系,类似还有I表示 image,O表示 object,C 表示 Camera等。而各种坐标系齐次变换矩阵T的左上标表示转换后的坐标系,右下标表示转换前的坐标系。如 c T e ^{c}T_e cTe或 c V e ^{c}V_e cVe表示从末端坐标系E到相机坐标系C的坐标变换矩阵或称为齐次变换矩阵(齐次变换矩阵即旋转变换和位移变换融合到了一个矩阵当中)。
3.成像模型推导
-
相关概念:透视投影模型。
-
关于透视投影这篇文章讲的很好: 深蓝AI:经典干货|相机模型与张氏标定。参考了这篇文章。
-
小孔成像模型
光心位于成像平面的前方,成倒立的像,这样不方便IBVS的推导。
-
透视投影模型
光心位于成像平面的后方,成正立的实像,更符合实际成像过程,方便IBVS的推导。
-
世界系、相机系、图像系、像素系的轴向、原点位置示意图
相机系记作Oc-XcYcZc.
图像系记作o-xy.
像素系记作o-uv.
相机系的原点在光心,Xc轴水平向右,Yc轴竖直向下,Zc轴水平向前。
图像坐标系的原点在Zc轴与成像平面的交点处,x、y轴分别与Xc、Yc轴同向。
像素坐标系的原点在成像平面的左上角,u、v轴分别与图像系的x、y轴同向。
图像系原点在像素系中的坐标为【u0,v0】,也被称为主点坐标。
相机系原点到成像平面的距离为 f,即焦距。 -
像素系坐标与图像系坐标间的关系
{ u = x d x + u 0 = p x + u 0 v = x d x + u 0 = p x + u 0 (式 1 ) \begin{cases} u=\frac x {dx}+u_0=p_x+u_0 \\ v=\frac x {dx}+u_0=p_x+u_0 \end{cases}(式1) { u=dxx+u0=px+u0v=dxx+u0=px+u0(式1)
其中:
[ u 0 , v 0 ] [u_0,v_0] [u0,v0]是图像系原点在像素系中的坐标;
p x , p y p_x,p_y px,py是图像系中 xy 轴的单位长度对应的像素个数;
u , v u,v u,v是像素系中的坐标;
x , y x,y x,y是图像系中的坐标。 -
图像系坐标与相机系坐标间的关系
{ x = f Z X y = f Z Y (式 2 ) \begin{cases} x=\frac f {Z}X \\ y=\frac f {Z}Y \end{cases}(式2) { x=ZfXy=ZfY(式2)
其中:
f f f 是相机焦距;
x y xy xy 是图像系中的坐标;
X Y Z XYZ XYZ 是目标点在相机系中的坐标。 -
相机内参
(式1)、(式2) 提到的参数 u 0 , v 0 , p x , p y u_0,v_0,px,p_y u0,v0,px,py 被称为相机的内参,通过相机标定得到。
4.IBVS理论推导
问题描述:
假设在世界3维空间中有一点P,
在相机系中的坐标记作 [ X , Y , Z ] [X,Y,Z] [X,Y,Z],
在图像系中的坐标记作 [ x , y ] [x,y] [x,y],
在像素系中的坐标记作 [ u , v ] [u,v] [u,v]。
记相机的6自由度运动速度矢量(相机坐标系的速度矢量)为:
V c = [ v x , v y , v z , w x , w y , w z ] T (式 3 ) V_c=[v_x,v_y,v_z,w_x,w_y,w_z]^T(式3) Vc