目标检测YOLO实战应用案例100讲-基于改进YOLO算法的加油站监控场景目标检测

目录

前言

国内外研究现状

传统目标检测算法 

深度学习目标检测算法 

卷积神经网络与目标检测技术概述 

2.1 卷积神经网络 

2.1.1 卷积层 

2.1.2 池化层 

2.1.3 激活函数层 

2.1.4 全连接层 

2.2  YOLO系列算法

 2.2.1  YOLOv1算法 

2.2.2  YOLOv2算法 

2.2.3  YOLOv3算法 

2.2.4  YOLOv3-Tiny算法 

IVC加油站监控场景特征增强算法研究  

3.1  引言 

3.2  IVC特征增强算法 

3.2.1  Mosaic数据增强 

 3.2.2  InceptionV2多尺度特征提取方法 

3.2.3  IVC加油站监控场景特征增强算法结构 


本文篇幅较长,分为上下两篇,下篇详见基于改进YOLO算法的加油站监控场景目标检测(续)

 

前言

随着中国经济的飞速发展,人民收入稳步提升,机动车已成为人民日常生活和工 作中必不可少的一部分,加油站数量也随之逐年增多。而加油站作为油品销售经营的 场所且油品具有易燃易爆,易导电,有毒的特性,因此要特别注重对加油站工作人员 加油卸油过程中佩戴安全设备的监管,杜绝因加油卸油过程中存在设备不规范佩戴与 使用而造成不可挽回的严重后果[ 1],从而维护人民生命财产安全,为石油行业的发展保 驾护航。 
然而目前加油站员工的安全设备规范

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值