目标检测YOLO实战应用案例100讲-基于YOLOv3的低照度目标检测

本文详细介绍了低照度图像处理原理和目标检测算法,特别是针对YOLOv3在低照度目标检测中的应用。通过对传统方法和基于深度学习的增强方法的探讨,提出了基于YOLOv3的低照度目标检测算法,旨在解决光照不足导致的图像检测难题。实验表明,该方法能在低照度条件下有效提高目标检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

国内外研究现状

2 低照度增强及目标检测方法介绍

2.1低照度图像处理原理

2.1.1图像信号处理过程

2.1.2低照度图像生成

2.1.3传统的低照度图像增强方法

2.1.4基于深度学习的低照度增强方法

2.2目标检测算法介绍

2.2.1目标检测算法分类

2.2.2 YOLOv1

2.2.3 YOLOv2

2.2.4 YOLOv3

2.3数据集

2.3.1 Exdark数据集

2.3.2 PASCAL VOC数据集


本文篇幅较长,分为上下两篇,下篇详见基于YOLOv3的低照度目标检测(续)​​​​​​​

前言

计算机视觉在众多领域有着极为广泛的应用价值,随着计算机性能的飞速发展,目 标检测作为计算机视觉的一个重要分支也得到了广泛关注,在越来越多的场景中发挥着 重要作用[1]。例如,在军事领域中,它可用于导弹定位与追踪,站岗检查等任务;在民 用领域中,它可用于智能辅助驾驶,智能监控等工作。可以说,目标检测技术已经在不 知不觉中为我们的生活提供了极大的便利。
目标检测算法在正常照度数据集中取得了很好的效果,在实际工程中也有很广泛的 应用。但是,由于环境因素和技术因素的影响,如照明不足和曝光时间不足等,图像可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值