PCL 基于法向量夹角的点云特征点提取(多线程加速版)

在这里插入图片描述
  算法原理参考自论文,实现代码由CSDN点云侠原创,首发于:2025年2月21日。

一、算法原理

1、原理概述

  特征点是点云数据中具有代表性和描述性并能够反映点云外观的关键点,能否快速准确提取特征点,这对配准的精度和效率有很大的影响。法向量和曲率是点云数据中各点的重要属性,法向量夹角及曲率值均不随物体位置的变化而改变。
在这里插入图片描述
因此,如果某点所在邻域法向量变化较大,则该点与其附近点的法向量夹角也较大,该邻域起伏变化明显,认为该邻域存在特征点。

2、参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值