PCL K4PCS算法实现点云配准

259 篇文章 7635 订阅 ¥19.90 ¥99.00

一、算法原理

1、算法概述

K-4PCS方法主要分为两个步骤
(1) 利用VoxelGrid滤波器对点云进行下采样,然后使用标准方法(3D harris或者3D DoG.)进行3D关键点检测。
(2) 通过4PCS算法使用关键点集合而非原始点云进行数据的匹配,降低了搜索点集的规模,提高了运算效率。

2、算法流程

这个算法中文版论文里边用的较少,等看到了再贴上补充!!!下边给出英文原版论文的名称。

3、参考文献

[1]THEILER P W, WEGNER J D, SCHINDLER K. Keypoint-based 4-points congruent sets - automated marker-less registration of laser scans[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,96(10):1

  • 7
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 36
    评论
RANSAC(随机抽样一致性)算法是一种经典的点云配准方法,用于估计两个点云之间的刚性变换。然而,传统的RANSAC算法在噪声点较多或点云缺失较严重时,存在较大的误配现象。为了解决这个问题,可以采用PCL(点云库)中提供的改进的RANSAC算法实现点云粗配准PCL中改进的RANSAC算法主要包括以下几个步骤: 1. 随机采样:从原始点云中随机选择一小部分特征点作为样本点,用于估计初始的旋转矩阵和平移向量。 2. 配准评估:基于样本点估计的初始变换参数,计算其余的点和目标点之间的误差(如欧氏距离),并将其作为新一轮迭代的样本点。 3. 简化模型:根据预定义的阈值,筛选出内点,将其作为新的样本点重新估计初始的变换参数。 4. 反馈迭代:重复以上步骤2和3,直至符合迭代次数或误差小于设定阈值。 5. 最优解选择:从所有迭代过程中选择误差最小的变换参数,作为最终的配准结果。 通过这种改进的RANSAC算法,可以提高点云配准的精度和鲁棒性。它对于噪声点和点云缺失的处理更加稳健,减少了误配的可能性。同时,该算法在计算效率上也进行了优化,能够较快地得到粗配准的结果。 总之,PCL中改进的RANSAC算法是一种有效的点云粗配准方法,可以对两个点云进行刚性变换的估计,具有较高的精度和鲁棒性。该算法在实际应用中可以广泛地应用于三维重建、机器人导航和虚拟现实等领域。
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值