PCL K4PCS算法实现点云粗配准【2025最新版】

267 篇文章 ¥19.90 ¥99.00
本文介绍了PCL库中的K4PCS算法,该算法用于点云配准。首先通过VoxelGrid滤波和3D关键点检测对点云进行预处理,然后利用4PCS算法降低匹配复杂度,提高配准效率。虽然中文资料较少,但给出了英文原版论文引用。此外,文章还涵盖了代码实现和结果展示。

在这里插入图片描述

本文由CSDN点云侠原创,原文链接,首发于:2020年4月27日。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的抄袭狗。

博客长期更新,本文最近一次更新时间为:2025年1月17日。

一、算法原理

1、算法概述

K-4PCS方法主要分为两个步骤
(1) 利用VoxelGrid滤波器对点云进行下采样,然后使用标准方法(3D harris或者3D DoG.)进行3D关

评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值