PyTorch 中mm和bmm函数的使用详解

torch.mm 是 PyTorch 中用于 二维矩阵乘法(matrix-matrix multiplication) 的函数,等价于数学中的 A × B 矩阵乘积。


一、函数定义

torch.mm(input, mat2) → Tensor

执行的是两个 2D Tensor(矩阵)的标准矩阵乘法。

  • input: 第一个二维张量,形状为 (n × m)
  • mat2: 第二个二维张量,形状为 (m × p)
  • 返回:形状为 (n × p) 的张量

二、使用条件和注意事项

条件说明
仅支持 2D 张量一维或三维以上使用 torch.matmul@ 操作符
维度要匹配input.shape[1] == mat2.shape[0]
不支持广播两个矩阵维度不匹配会直接报错
结果是普通矩阵乘积不是逐元素乘法(Hadamard),即不是 *torch.mul()

三、示例代码

示例 1:基本矩阵乘法

import torch

A = torch.tensor([[1., 2.], [3., 4.]])   # 2x2
B = torch.tensor([[5., 6.], [7., 8.]])   # 2x2

C = torch.mm(A, B)
print(C)

输出:

tensor([[19., 22.],
        [43., 50.]])

计算步骤:

C[0][0] = 1*5 + 2*7 = 19
C[0][1] = 1*6 + 2*8 = 22
...

示例 2:不匹配维度导致报错

A = torch.rand(2, 3)
B = torch.rand(4, 2)
C = torch.mm(A, B)  # ❌ 会报错

报错:

RuntimeError: mat1 and mat2 shapes cannot be multiplied (2x3 and 4x2)

示例 3:推荐写法(推荐使用 @matmul

A = torch.rand(3, 4)
B = torch.rand(4, 5)

C1 = torch.mm(A, B)
C2 = A @ B                # 推荐用法
C3 = torch.matmul(A, B)   # 推荐用法

四、与其他乘法函数的比较

函数名支持维度运算类型支持广播
torch.mm仅限二维矩阵乘法❌ 不支持
torch.matmul1D, 2D, ND自动判断点乘 / 矩阵乘✅ 支持
torch.bmm批量二维乘法3D Tensor batch × batch❌ 不支持
torch.mul任意维度元素乘(Hadamard)✅ 支持
* 运算符任意维度元素乘✅ 支持
@ 运算符ND(推荐用)矩阵乘法(和 matmul 一样)

五、典型应用场景

  • 神经网络权重乘法:output = torch.mm(W, x)
  • 点云 / 图像变换:x' = torch.mm(R, x) + t
  • 多层感知机中的矩阵计算
  • 注意力机制中 QK^T 乘积

六、总结:什么时候用 mm

使用场景用什么
仅二维矩阵乘法torch.mm
高维或支持广播乘法torch.matmul / @
批量矩阵乘法 (如 batch_size×3×3)torch.bmm
元素乘torch.mul or *

在 PyTorch 中,torch.bmm批量矩阵乘法(batch matrix multiplication) 的操作,专用于处理三维张量(batch of matrices)。它的主要作用是对一组矩阵成对进行乘法,效率远高于手动循环计算。


一、torch.bmm 语法

torch.bmm(input, mat2, *, out=None) → Tensor
  • input: Tensor,形状为 (B, N, M)
  • mat2: Tensor,形状为 (B, M, P)
  • 返回结果形状为 (B, N, P)

这表示对 BN×MM×P 的矩阵进行成对相乘。


二、示例演示

示例 1:基础用法

import torch

# 定义两个 batch 矩阵
A = torch.randn(4, 2, 3)  # shape: (B=4, N=2, M=3)
B = torch.randn(4, 3, 5)  # shape: (B=4, M=3, P=5)

# 批量矩阵乘法
C = torch.bmm(A, B)       # shape: (4, 2, 5)

print(C.shape)  # 输出: torch.Size([4, 2, 5])

示例 2:手动循环 vs bmm 效率对比

# 慢速手动方式
C_manual = torch.stack([A[i] @ B[i] for i in range(A.size(0))])

# 等效于 bmm
C_bmm = torch.bmm(A, B)

print(torch.allclose(C_manual, C_bmm))  # True

三、注意事项

1. 维度必须是三维张量

  • 否则会报错:
RuntimeError: batch1 must be a 3D tensor

你可以通过 .unsqueeze() 手动调整维度:

a = torch.randn(2, 3)
b = torch.randn(3, 4)

# 升维
a_batch = a.unsqueeze(0)  # (1, 2, 3)
b_batch = b.unsqueeze(0)  # (1, 3, 4)

c = torch.bmm(a_batch, b_batch)  # (1, 2, 4)

2. 维度必须满足矩阵乘法规则

  • (B, N, M) × (B, M, P)(B, N, P)
  • M 不一致会报错:
RuntimeError: Expected size for the second dimension of batch2 tensor to match the first dimension of batch1 tensor

3. bmm 不支持广播(broadcasting)

  • 必须显式提供相同的 batch size。
  • 如果只有一个矩阵固定,可以使用 .expand()
A = torch.randn(1, 2, 3)  # 单个矩阵
B = torch.randn(4, 3, 5)  # 4 个矩阵

# 扩展 A 以进行 batch 乘法
A_expand = A.expand(4, -1, -1)
C = torch.bmm(A_expand, B)  # (4, 2, 5)

四、在实际应用中的例子

在点云变换中:批量乘旋转矩阵

# 假设有 B 个旋转矩阵和点坐标
R = torch.randn(B, 3, 3)       # 旋转矩阵
points = torch.randn(B, 3, N)  # 点云

# 先转置点坐标为 (B, N, 3)
points_T = points.transpose(1, 2)  # (B, N, 3)

# 用 bmm 做点变换:每组点乘旋转
transformed = torch.bmm(points_T, R.transpose(1, 2))  # (B, N, 3)

五、总结

特性torch.bmm
操作对象三维张量(batch of matrices)
核心规则(B, N, M) x (B, M, P) = (B, N, P)
是否支持广播❌ 不支持,需要手动 .expand()
matmul 区别matmul 支持更多广播,bmm 更高效用于纯批量矩阵乘法
应用场景批量线性变换、点云配准、神经网络前向传播等

### DeblurGANv2 鉴别器损失函数详解 在 DeblurGANv2 的框架中,鉴别器的设计采用了多尺度局部判别的策略来增强模型的性能。具体来说,ROI(Region of Interest)被定义为图像中的特定区域集合 {左眼、右眼、嘴巴}[^1]。这些区域对于人脸去模糊任务至关重要,因为它们通常包含了丰富的细节信息。 #### 多分辨率特征提取 ψ 表示通过学习得到的多分辨率特征。这种设计允许网络不仅关注全局结构,还能捕捉到不同层次上的细粒度信息。这有助于提高生成器生成清晰图像的能力,同时也增强了鉴别器区分真实与伪造样本的能力。 #### 局部判别器 D 每个 ROI 对应一个局部判别器 D,用于评估该区域内生成图像的真实性。这种方式相比传统的单一整体判别更加精细,能够有效减少因部分区域模糊而导致整个图片被判为不真实的概率。 #### 损失函数组成部分 DeblurGANv2 中的鉴别器损失由两大部分构成: 1. **局部判别性损失** 这一损失项衡量的是局部判别器对各个 ROI 上真假样本判断能力的好坏程度。其权重决定了此部分在整个训练过程中所占比例大小。 2. **特征样式损失** 特征样式损失旨在使生成图像在风格上更接近于真实数据分布。它通过对多分辨率特征 ψ 应用 Gram 矩阵计算而得,从而鼓励生成器模仿自然图像中存在的统计特性。 以下是基于上述理论的一个简化版 PyTorch 实现代码片段: ```python import torch.nn as nn class DiscriminatorLoss(nn.Module): def __init__(self, lambda_local=1.0, lambda_style=1e-3): super(DiscriminatorLoss, self).__init__() self.lambda_local = lambda_local self.lambda_style = lambda_style def forward(self, real_features, fake_features, local_d_real, local_d_fake): # 计算局部判别性损失 loss_local = (local_d_real.mean() - local_d_fake.mean()) * self.lambda_local # 计算Gram矩阵并获得特征样式损失 gram_real = self.compute_gram_matrix(real_features) gram_fake = self.compute_gram_matrix(fake_features) loss_style = ((gram_real - gram_fake)**2).mean() * self.lambda_style total_loss = loss_local + loss_style return total_loss @staticmethod def compute_gram_matrix(features): b, c, h, w = features.size() f = features.view(b, c, h*w) G = torch.bmm(f, f.transpose(1, 2)) / (c*h*w) return G ``` 以上代码展示了如何构建一个简单的鉴别器损失模块,其中包括了局部判别性特征样式的组合形式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值