单细胞分析实录(16): 非负矩阵分解(NMF)检测细胞异质性

相信做过肿瘤单细胞的小伙伴对这个分析并不陌生,如果多读几篇文献,就能在CNS以及大子刊上面看到这个分析。

非负矩阵分解(Nonnegative Matrix Factorization,NMF)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。 基本思想:给定一个非负矩阵V, NMF能够找到一个非负矩阵W和一个非负矩阵H, 使得矩阵W和H的乘积近似等于矩阵V中的值。

放在我们单细胞转录组的场景下,就是需要将一个基因×细胞的表达矩阵(V),分解成基因×表达程序(W),与表达程序×细胞(H)两个矩阵的乘积。如下图:

基因×表达程序矩阵中,存放的是每个program中,每个基因的权重,往往根据权重最大的前20/30个基因来确定该program的功能。如果是多个样本,每一个样本均进行以上操作,整合所有样本的基因×表达程序矩阵,还可以画相关性热图,也就是文献中经常出现的那个图。 在表达程序×细胞矩阵中,存放的是每个细胞中,每个program的相对强弱/使用情况。

接下来的内容分为两篇,本篇推文介绍一些文章中用NMF解析肿瘤细胞异质性的例子,下一篇手把手演示一遍NMF分析及作图(将在公众号发布)。

1. 头颈鳞癌

Single-Cell Transcriptomic Analysis

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值