向量组a可由向量组b线性表示什么意思

87 篇文章 ¥119.90 ¥299.90
向量组a可由向量组b线性表示意味着每个向量a可以通过b的线性组合得到,这一概念在解决线性方程组、矩阵理论中有关键应用。重要性质包括:A的秩等于(α1,α2,……,αm,B)的秩,B的秩不大于A的秩,零向量可由任何向量组线性表示等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

向量组a可由向量组b线性表示

重要性质


向量组a可由向量组b线性表示

的意思是,存在一组实数,使得向量组a中的每一个向量都可以表示为向量组b中向量的线性组合。具体来说,对于向量组a中的任意一个向量α,都存在一组实数(称为线性组合系数),使得向量α可以被表示为向量组b中向量的线性组合。

例如,如果有两个向量组A和B,A={a1,a2,a3},B={b1,b2,b3},那么如果向量组A中的每一个向量都可以由向量组B中的向量线性表示,那么就可以写作A ⊆ B或者B ⊇ A。

这个概念在数学和物理中都有重要的应用,比如在解决线性方程组、研究矩阵的秩和迹等问题中都会用到。

重要性质

1、向量组B=(β1,β2,……,β

根据题意,我们可以列出如下的线性方程组: $$ \begin{cases} a_1 + b_1 = 2 \\ a_2 + b_2 = 2 \\ a_3 + b_3 = 1 \\ \end{cases} $$ 其中 $a = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$,$a_1, a_2, a_3$ 分别表示向量 $a$ 的三个分量,$b_1, b_2, b_3$ 分别表示向量 $221+A$ 的三个分量。 我们可以将上述方程组写成矩阵形式:$Ax=b$,其中 $A=\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$,$x=\begin{pmatrix} a \\ b \end{pmatrix}$,$b=\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$。 对矩阵 $A$ 进行行列变换,可以得到下面的形式: $$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} $$ 这个方程组的解为 $a = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$,$b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$。 根据线性组合的定义,向量 $221+A$ 可以表示为 $a$ 和 $b$ 的线性组合,即: $$ 221+A = 2a + b $$ 因此,向量 $221+A$ 可以由向量 $a$ 和向量 $b$ 线性表示,并且表达式唯一。 接下来,我们考虑向量 $a$ 和向量 $a_2$、$a_3$ 的线性组合: $$ a = x_1 a_1 + x_2 a_2 + x_3 a_3 $$ 根据上面的矩阵形式,我们可以得到线性方程组: $$ \begin{cases} x_1 + x_2 + x_3 = 2 \\ x_3 = 1 \\ \end{cases} $$ 解这个方程组可以得到 $x_1 = 1$,$x_2 = 0$,$x_3 = 1$。因此,向量 $a$ 可以由向量 $a_1$、$a_3$ 线性表示,但表达式不唯一。 最后,我们考虑向量 $a$、$a_1$、$a_2$、$a_3$ 的线性组合: $$ 221+A = x_1 a + x_2 a_1 + x_3 a_2 + x_4 a_3 $$ 根据上面的矩阵形式,我们可以得到线性方程组: $$ \begin{cases} x_1 + x_2 = 2 \\ x_1 = 2 \\ x_2 = 2 \\ x_3 = 0 \\ x_4 = -1 \\ \end{cases} $$ 由于这个方程组的解不存在,因此向量 $221+A$ 不能由向量 $a$、$a_1$、$a_2$、$a_3$ 线性表示
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值