目录
向量组a可由向量组b线性表示
的意思是,存在一组实数,使得向量组a中的每一个向量都可以表示为向量组b中向量的线性组合。具体来说,对于向量组a中的任意一个向量α,都存在一组实数(称为线性组合系数),使得向量α可以被表示为向量组b中向量的线性组合。
例如,如果有两个向量组A和B,A={a1,a2,a3},B={b1,b2,b3},那么如果向量组A中的每一个向量都可以由向量组B中的向量线性表示,那么就可以写作A ⊆ B或者B ⊇ A。
这个概念在数学和物理中都有重要的应用,比如在解决线性方程组、研究矩阵的秩和迹等问题中都会用到。
重要性质
1、向量组B=(β1,β2,……,β