豆包(Doubao)和通义千问(Qwen)特殊标记设计与模型架构

1250 篇文章 ¥199.90 ¥299.90
832 篇文章 ¥199.90 ¥299.90
649 篇文章 ¥199.90 ¥299.90

豆包(Doubao)和通义千问(Qwen)特殊标记设计与模型架构

一、豆包(Doubao)的特殊标记

豆包的标记设计以多模态交互场景化任务为核心,结合字节跳动的业务生态进行了针对性优化:
在这里插入图片描述

1. 多模态标记
  • [IMG]
    • 用途:显式区分文本与图像输入,支持图文混合生成。
    • 技术关联:在多模态模型中,[IMG]标记引导模型通过交叉注意力机制融合视觉特征与文本信息,例如在豆包的图文生成任务中,输入格式为[IMG: 红色圆形] [TEXT: 这是一个...],模型通过多头注意力分别处理图像和文本特征。
### DeepSeek豆包(Doubao)的区别及其通义(Qianwen)的关系 #### 功能定位差异 DeepSeek是一个大型预训练模型,旨在提供广泛的人工智能服务,包括但不限于自然语言处理、图像识别等领域。相比之下,豆包可能更专注于特定应用场景下的解决方案,比如客服聊天机器人或是文档管理工具等更为垂直细分的服务[^1]。 #### 技术架构区别 对于DeepSeek而言,其背后依赖的是先进的深度学习框架技术栈,能够支持多模态输入输出,并且具备强大的上下文理解能力;而关于豆包的技术细节公开资料较少,但从现有描述来看,似乎更加侧重于轻量化设计,在资源消耗方面做了优化以便更好地适配移动端设备或其他计算能力有限的环境[^2]。 #### 通义的关系 通义作为阿里云推出的大规模预训练模型项目之一,代表了国内顶尖水平的语言理解生成技术成果。DeepSeek可以视为同类产品中的竞争者或者是互补合作伙伴关系——两者都致力于推动AI技术进步并为企业个人用户提供智能化服务。至于豆包,则可能是基于这些大模型之上构建的应用程序或插件形式存在,利用前者所提供的API接口来实现具体业务逻辑功能[^3]。 ```python # 这里仅作为一个示意性的代码片段展示如何调用假设存在的三个系统的API import requests def call_deepseek_api(query): response = requests.post('https://api.deepseek.com/v1/query', json={'text': query}) return response.json() def call_doubao_api(document_id): response = requests.get(f'https://doubao.example.org/docs/{document_id}') return response.text def call_qianwen_api(prompt): response = requests.post('https://qianwen.aliyun.com/api/generate', json={'prompt': prompt}) return response.json() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值