Robust Real-time UAV Replanning Using Guided Gradient-based Optimization and Topological Paths

该论文提出一种结合梯度优化与拓扑路径规划的无人机实时重规划方法,旨在解决基于梯度的路径优化易陷入局部最优的问题。通过引入几何引导路径和拓扑路径搜索,生成安全、平滑的飞行轨迹,并利用UVD算法高效地处理路径等价关系。此外,还介绍了如何在路径搜索中应用采样策略和路径缩短、修剪技术,以实现快速有效的实时路径规划。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇论文是港科大开源的无人机运动规划fast planner的第二版,这里写下我对这篇工作的理解。

摘要

 基于梯度的方法(GTO)容易陷入局部最优,本文就是提出一个新的基于GTO的方法来解决这个问题。

相关工作

基于梯度的路径优化

 GTO是一种主要的路径生成算法,把路径生成看作一个最小化目标函数的非线性优化问题。

拓扑路径规划

 用拓扑路径来进行规划

路径制导轨迹优化

A. 优化失效分析

 GTO规划的失败和不好的初始路径有关。如下图所示,在欧式符号距离场(ESDF)中,梯度会拉动路径让它离开障碍物,但是如果路径穿越“山脊”或者“山谷”,梯度会是两个完全相反的方向,让路径规划出现问题。
在这里插入图片描述
 对于这种情况,仅仅靠ESDF的梯度并不够,需要额外的信息。

B. 问题公式化

 文中提出的PGO方法是对上面GTO的改进,它把路径用B样条来表示。对于PGO方法,分为两步,第一个阶段产生一个过渡的预热轨迹(warmup trajectory),然后对这个warmup trajectory的平滑度和净空度再进行优化。两个阶段如下图:
在这里插入图片描述
 a图的绿色是初始B样条轨迹,橙色的是几何引导路径,几何引导路径把初始轨迹拉到没有碰撞的地方形成warmup 路径(蓝色),然后b图中,对warmup路径再进一步进行平滑度和净空度的优化,得到红色最终轨迹。这个几何引导路径通过A或者RRT等传统方法就可以得到,本文用的是采样的方法得到这条引导路径。
 第一阶段的目标函数是:
在这里插入图片描述
这里 f s f_s fs是平滑度的约束,具体在第一版的fast planner里有描述:
在这里插入图片描述

f g f_g fg是引导路径和B样条路径之间的距离的惩罚函数:
在这里插入图片描述
这里的 Q i Q_i Qi是B样条的控制点, G i G_i Gi

实时系统是指在严格的时间限制下,对输入数据进行处理并及时产生输出响应的系统。在实时系统中,一个重要的因素是系统的架构设计,而对于实时系统的架构设计来说,一个关键的考虑因素是其鲁棒性和可扩展性。 所谓鲁棒性,是指系统能够应对各种异常情况和外部干扰而保持正常工作的能力。在实时系统中,鲁棒的架构可以通过多种方式实现,例如使用冗余设计和错误处理机制。冗余设计可以通过多个处理器或模块的冗余部署来提高系统的容错能力,以便在一个处理器或模块发生故障时,系统依然能够正常工作。而错误处理机制可以包括错误检测和错误恢复两个方面,以保证系统对错误的及时发现和恢复能力。 可扩展性是指系统能够根据实际需求进行灵活的扩展和升级的能力。对于实时系统来说,可扩展的架构可以基于不同的需求进行模块的添加或替换,以满足不同规模和性能要求的系统。例如,当实时系统的负载增加时,可以通过增加处理器数量或增加存储容量来扩展系统的性能。 对于实时系统的架构设计,一个常用的方法是采用分布式架构。在分布式架构中,系统的不同功能模块可以分布在不同的节点上,通过通信和协作来完成任务。这种设计能够充分利用分布式计算和通信的特点,提高系统的并行度和可靠性。 综上所述,Robust scalable architecture for real-time systems(实时系统的强韧可扩展架构)PDF提供了一种鲁棒性和可扩展性的实时系统架构设计方案。该架构通过冗余设计和错误处理机制实现系统的鲁棒性,同时采用分布式架构实现系统的可扩展性。这样的架构设计能够有效应对实时系统中的异常情况和外部干扰,并能够根据实际需求灵活扩展系统的性能和规模。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值