【控制理论】状态观测器解析

背景

有些状态量并不能由传感器直接观测出来,那么可以通过控制量和输出量把状态量观测出来。

全状态观测器

对于一个系统 :
x ˙ = A x + b u y = c x \dot x=Ax+bu\\y=cx x˙=Ax+buy=cx
如果已知A、b、c(也就是已知模型),那么可以观测出估计状态量 x ^ \hat x x^
x ˙ ^ = A x ^ + b u \hat{\dot x}=A\hat x+bu x˙^=Ax^+bu
只要能获取原系统的初始状态,那么是可以得到 x ^ ( t ) = x ( t ) , t ≥ 0 \hat x(t)=x(t),t\ge0 x^(t)=x(t)t0的。

这就是开环状态观测器
在这里插入图片描述
开环观测器有个很大的问题是,如果A的特征值在右半平面,一旦某一个时刻的状态观测不准确,那么估计状态和实际状态之间的误差会越变越大,最终状态的估计完全失真。

这里留一个思考题,为什么说A的特征值在右半平面,系统会不稳定呢?(我们通常把这个当作一个结论) 答案我放在这篇博客里了【控制理论】【数学基础】为什么说对于dX=AX系统,A的特征值在右半平面系统不稳定

既然开环观测器不稳定,那么引入一个修正项 L ( y − c x ^ ) L(y-c\hat x) L(ycx^),新的观测状态方程写作:
x ˙ ^ = A x ^ + b u + L ( y − c x ^ ) \hat{\dot x}=A\hat x+bu+L(y-c\hat x) x˙^=Ax^+bu+L(ycx^)
L是需要设计的矩阵,相比于开环状态器,这个观测器形成了闭环。
在这里插入图片描述
闭环状态观测器的稳定要好很多,一起来分析一下,定义误差 e = x − x ^ e=x-\hat x e=xx^
则: e ˙ = x ˙ − x ^ ˙ \dot e=\dot x-\dot {\hat x} e˙=x˙x^˙,把两个状态方程带入进去,有:
e ˙ = ( A − L c ) e \dot e=(A-Lc)e e˙=(ALc)e,
那么只要 A − L c A-Lc ALc的特征值全部在频域负半平面,那么误差最终肯定会收敛到零,而不论初始的误差有多大。
怎样可以让 A − L c A-Lc ALc的特征值全部在频域负半平面呢,要满足系统(A,c)能观测。

全状态观测器的设计方法

1、根据期望的极点设计
( s − λ 1 ) ( s − λ 2 ) . . . ( s − λ n ) = 0 (s-\lambda_1)(s-\lambda_2)...(s-\lambda_n)=0 (sλ1)(sλ2)...(sλn)=0,期望的极点等于 A − L c A-Lc ALc的特征值。
2、实际中系统的状态方程肯定是有误差的,A这个状态矩阵没法得到,那么怎么解决?
step1、设计和A同维的矩阵F
step2、设计矫正矩阵L,使得系统(F,L)可观测
step3、计算矩阵T, T A − F A = L c TA-FA=Lc TAFA=Lc
step4、新的状态矩阵
z ˙ = F z + T b u + L y x ^ = T − 1 z \dot z=Fz+Tbu+Ly\\ \hat x=T^{-1}z z˙=Fz+Tbu+Lyx^=T1z
只要F矩阵稳定,那么误差最终会减小到零。证明过程比较简单,就不放了。

  • 7
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值