目标检测数据集:Open Images Dataset V6 + Extensions 网站获取已经标注好的数据集

一、简介

  Open Images Dataset是一个可以提供免费数据集的网站,里面的数据集提供了目标检测任务、语义分割任务的标签,可以减少我们搜集数据的压力。网址是(这里):
在这里插入图片描述

二、数据集说明

  我们以获取目标检测数据集为例,对于方框中的一个物体,我们记录的是这个方框的左上角坐标(x1,y1)和右下角坐标(x2,y2),目标检测的数据标签如下:
在这里插入图片描述

1.查看数据集

  点击Explore,在Category中搜索我们需要的数据,这里以车(Car)为例。
在这里插入图片描述

2.搜索选项

Subset:
  有两个选项,下载train(训练集);
在这里插入图片描述

Type Detection:
  选择Detection,即目标检测数据集;
在这里插入图片描述

Options:
  仅仅是可视化作用,选择第二个Show text in boxes显示目标的名字。
在这里插入图片描述

三、数据集下载和使用

  下载和使用的代码已经分别放在OIDv4_ToolKit文件的main.py和convert_annotations.py中。运行代码所需要的库如下,如果有未安装的,直接运行 pip install 库名即可;例如:

pip install pandas
pip install numpy
pandas
numpy
awscli
urllib3
tqdm
opencv-python

  或者在OIDv4_ToolKit文件夹下运行pip install -r requirements.txt来安装所有必备库。

1.数据集下载

  在OIDv4_ToolKit文件夹下运行如下指令:
python main.py downloader --classes Car --type_csv train --limit 1000
这里运行main.py进行下载,输入类别(car)、数据类型(train)以及需要下载的数量(1000)。弹出的两个选项都输入y,然后回车,显示开始下载。
在这里插入图片描述

  其中有一条信息会提示我们需要找的类(car)在网址中一共有多少张照片,car可以找到89465张,所以我们要下载的数量不能超过这个数。
在这里插入图片描述

2.下载失败

  在windows可能下载失败(我没成功过),所以可以将代码文件夹OIDv4_ToolKit上传到Google Colab中,直接将数据集下载到谷歌云盘(需要注册)中。依次执行:

# 安装必备的功能包,后面的路径是谷歌云盘中OIDv4_ToolKit所在的路径,自行修改
!pip install -r ./OIDv4_ToolKit/requirements.txt

#这里运行main.py进行下载
!python ./OIDv4_ToolKit/main.py downloader --classes Car --type_csv train --limit 1000 

3.从谷歌云盘中下载数据

  如果在windows下可以下载,那就跳过这步。在google colab中下载的话,需要将数据从谷歌云盘中下载到本地电脑。将下载好的OID文件夹用鼠标拖动到谷歌云盘中。
在这里插入图片描述

或者在colab中执行如下python代码:

# -*- coding:utf-8 -*-
import shutil
import os
def remove_file(old_path, new_path):
    print(old_path)
    print(new_path)
    filelist = os.listdir(old_path)#列出该目录下的所有文件,listdir返回的文件列表是不包含路径的。
    print(filelist)
    for file in filelist:
        src = os.path.join(old_path, file)
        dst = os.path.join(new_path, file)
        print('src:', src)# 原文件路径下的文件
        print('dst:', dst)# 移动到新的路径下的文件
        shutil.move(src, dst)
if __name__ == '__main__':
    old_path = '/content/OID'          # 原文件夹路径
    new_path = '/content/drive/MyDrive/OID'      # 新文件夹路径
    remove_file(old_path, new_path)

在谷歌云盘中右键下载即可。
在这里插入图片描述

下载到本地可以打开查看:
在这里插入图片描述

4.转化成数据集所需格式

  首先将OID文件夹放到OIDv4_ToolKit文件夹中。
在这里插入图片描述

修改classes.txt,里面输入类别。
在这里插入图片描述

然后直接运行convert_annotations.py,运行后的结果可以打开OID查看,每副图片的标签都以txt的形式放到了一起:

在这里插入图片描述
在这里插入图片描述

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值