PyTorch 提供了 torch.Tensor 来表示一个包含单一数据类型元素的多维数组。 默认情况下,数组元素连续存储在内存中,从而可以有效地实现各种数组处理算法,这些算法依赖于对数组元素的快速访问。
然而,存在一类重要的多维数组,即所谓的稀疏数组,其中数组元素的连续内存存储被证明是次优的。 稀疏数组具有大部分元素为零的特性,这意味着如果仅存储或/和处理非零元素,则可以节省大量内存和处理器资源。
1 构造稀疏矩阵
import torch
i = torch.LongTensor([[0, 1, 1],[2, 0, 2]]) #row, col
v = torch.FloatTensor([3, 4, 5]) #data
torch.sparse.FloatTensor(i, v, torch.Size([2,3])).to_dense() #torch.Size
'''
tensor([[0., 0., 3.],
[4., 0., 5.]])
'''
构造方法和 scipy笔记:scipy.sparse_UQI-LIUWJ的博客-CSDN博客 2.2 coo矩阵 的类似
- 在 PyTorch 中,稀疏张量的填充值不能明确指定,一般假定为零。
- 但是,存在可能以不同方式解释填充值的操作。 例如,torch.sparse.softmax() 计算 softmax 时假设填充值为负无穷大。
1.1 稀疏COO tensor
- 在 COO 格式(coordinate)中,指定的元素存储为元素索引和相应值的元组。
- 元素索引的类型是torch.int64,size是(ndim,nse)
- 数值类型是任何类型,size是(nse,)
import torch
i = [[0, 1, 1],
[2, 0, 2]]
v = [3, 4, 5]
s = torch.sparse_coo_tensor(i, v, (2, 3))
s
'''
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([3, 4, 5]),
size=(2, 3), nnz=3, layout=torch.sparse_coo)
'''
s.is_sparse
#True
s.layout
#torch.sparse_coo
x坐标为0,y坐标为2的元素是3;x坐标为1,y坐标为1的元素是4.。。。
1.1.0 稀疏矩阵转换成正常Tensor
s.to_dense()
'''
tensor([[0, 0, 3],
[4, 0, 5]])
'''
1.1.1 COO tensor和正常tensor(strided tensor)空间复杂度对比
- COO tensor:ndim*8*nse+<element_size>*nse
- 正常tensor: <tensor_size>*<element_size>
- 举例 一个10,000*10,000的 float32 Tensor,其中有100,000个非零元素
- 正常Tensor的话,需要10 000 * 10 000 * 4 = 400 000 000 比特
- 使用COO tensor的话,需要(2 * 8 + 4) * 100 000 = 2 000 000比特
1.2.3 创建空的COO tensor
torch.sparse_coo_tensor(size=(2, 3))
'''
tensor(indices=tensor([], size=(2, 0)),
values=tensor([], size=(0,)),
size=(2, 3), nnz=0, layout=torch.sparse_coo)
'''
1.2.4 混合稀疏COO Tensor
- 我们可以将前面value值为标量的稀疏张量扩展到value值为连续张量的稀疏张量。
- 这种张量称为混合张量。
- 元素索引的类型是torch.int64,size是(ndim,nse)
- 数值类型是任何类型,size是(nse,dense_dims)
- 对应的稀疏矩阵的维度是n_dim+dense_dims
import torch
i = [[0, 1, 1],
[2, 0, 2]]
v = [[3,2],[4,1],[5,3]]
s = torch.sparse_coo_tensor(i, v, (2, 3,2))
s,s.to_dense()
'''
(tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([[3, 2],
[4, 1],
[5, 3]]),
size=(2, 3, 2), nnz=3, layout=torch.sparse_coo),
tensor([[[0, 0],
[0, 0],
[3, 2]],
[[4, 1],
[0, 0],
[5, 3]]]))
'''
1.2.5 未合并的稀疏COO 张量
- PyTorch 稀疏 COO 张量格式允许未合并的稀疏张量,其中索引中可能存在重复坐标;
- 在这种情况下,该索引处的值是所有重复值条目的总和。
- 例如,可以为同一个索引 1 指定多个值 3 和 4,这会导致未合并张量:
i = [[1, 1]]
v = [3, 4]
s=torch.sparse_coo_tensor(i, v, (3,))
s
'''
tensor(indices=tensor([[1, 1]]),
values=tensor([3, 4]),
size=(3,), nnz=2, layout=torch.sparse_coo)
'''
s.is_coalesced()
#False
合并(结果仍为稀疏张量)
s.coalesce()
'''
tensor(indices=tensor([[1]]),
values=tensor([7]),
size=(3,), nnz=1, layout=torch.sparse_coo)
'''
s.coalesce().is_coalesced()
# True
s.to_dense()
#tensor([0, 7, 0])
1.2.6 是否需要合并?
- 在大多数情况下,不用关心稀疏张量是否被合并,因为在给定合并或未合并稀疏张量的情况下,大多数操作的工作方式相同。
- 但是,一些操作可以在未合并的张量上更有效地实现,而一些操作可以在合并的张量上更有效地实现。
- 例如,通过简单地连接索引和值张量来实现稀疏 COO 张量的添加:
a = torch.sparse_coo_tensor([[1, 1]], [5, 6], (2,))
b = torch.sparse_coo_tensor([[0, 0]], [7, 8], (2,))
a + b
'''
tensor(indices=tensor([[0, 0, 1, 1]]),
values=tensor([7, 8, 5, 6]),
size=(2,), nnz=4, layout=torch.sparse_coo)
'''
1.2.7 查看indice和value
1)不用事先合并
import torch
i = [[0, 1, 1],
[2, 0, 2]]
v = [3, 4, 5]
s = torch.sparse_coo_tensor(i, v, (2, 3))
print(s)
print(s._indices())
print(s._values())
'''
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([3, 4, 5]),
size=(2, 3), nnz=3, layout=torch.sparse_coo)
tensor([[0, 1, 1],
[2, 0, 2]])
tensor([3, 4, 5])
'''
2) 需要事先合并
print(s.indices())
print(s.values())
'''
RuntimeError Traceback (most recent call last)
<ipython-input-27-b4753553cd54> in <module>
8 s = torch.sparse_coo_tensor(i, v, (2, 3))
9 print(s)
---> 10 print(s.indices())
11 print(s.values())
RuntimeError: Cannot get indices on an uncoalesced tensor, please call .coalesce() first
'''
print(s.coalesce().indices())
print(s.coalesce().values())
'''
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([3, 4, 5]),
size=(2, 3), nnz=3, layout=torch.sparse_coo)
tensor([[0, 1, 1],
[2, 0, 2]])
tensor([3, 4, 5])
'''
1.2.6 sparse_dim 和dense_dim
一个是index的dim,一个是value的dim
import torch
i = [[0, 1, 1],
[2, 0, 2]]
v = [3, 4, 5]
s = torch.sparse_coo_tensor(i, v, (2, 3))
print(s.sparse_dim(),s.dense_dim())
#(2,0)
i = [[0, 1, 1],
[2, 0, 2]]
v = [[3,2],[4,1],[5,3]]
s = torch.sparse_coo_tensor(i, v, (2, 3,2))
print(s.sparse_dim(),s.dense_dim())
#(2,1)
1.2.7 切片和索引
i = [[0, 1, 1],
[2, 0, 2]]
v = [[3,2],[4,1],[5,3]]
s = torch.sparse_coo_tensor(i, v, (2, 3,2))
print(s)
'''
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([[3, 2],
[4, 1],
[5, 3]]),
size=(2, 3, 2), nnz=3, layout=torch.sparse_coo)
'''
在sparse维度(index部分)和dense部分(value部分)都可以索引
s[1]
'''
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([[3, 2],
[4, 1],
[5, 3]]),
size=(2, 3, 2), nnz=3, layout=torch.sparse_coo)
'''
s[1,0,1]
#tensor(1)
切片只能在dense部分切
s[1,0,1:],s[1,0,0:]
#(tensor([1]), tensor([4, 1]))
2 稀疏矩阵的基本运算
基本上都是第一个参数是sparse的,第二个是正常Tensor
先构造两个稀疏矩阵
import torch
i = torch.LongTensor([[0, 1, 1],[2, 0, 2]]) #row, col
v = torch.FloatTensor([3, 4, 5]) #data
x1=torch.sparse.FloatTensor(i, v, torch.Size([2,3]))
x1,x1.to_dense()
'''
(tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([3., 4., 5.]),
size=(2, 3), nnz=3, layout=torch.sparse_coo),
tensor([[0., 0., 3.],
[4., 0., 5.]]))
'''
import torch
i = torch.LongTensor([[0, 1, 1],[1, 0, 1]]) #row, col
v = torch.FloatTensor([3, 4, 5]) #data
x2=torch.sparse.FloatTensor(i, v, torch.Size([3,2]))
x2,x2.to_dense()
'''
(tensor(indices=tensor([[0, 1, 1],
[1, 0, 1]]),
values=tensor([3., 4., 5.]),
size=(3, 2), nnz=3, layout=torch.sparse_coo),
tensor([[0., 3.],
[4., 5.],
[0., 0.]]))
'''
2.0 不支持dense * sparse!
pytorch不支持M[strided] @ M[sparse_coo]
如果需要,可以这么整:D @ S == (S.t() @ D.t()).t()
2.1 稀疏矩阵的乘法
2.1.1 torch.mm
只支持第二个参数是dense(即dense*dense,或者sparse*dense),输出是dense
dense*dense | |
dense*sparse | |
sparse*sparse | |
sparse*dense |
2.1.2 torch.sparse.mm
同样地,只支持第二个参数是dense(即dense*dense,或者sparse*dense)
dense*dense | |
dense*sparse | |
sparse*sparse | |
sparse*dense |
2.1.3 torch.mv
矩阵和向量的乘法,第二个也只能是dense的
import torch
i = [[0, 1, 1],
[2, 0, 2]]
v = [3, 4, 5]
s = torch.sparse_coo_tensor(i, v, (2, 3))
print(s.to_dense())
'''
tensor([[0, 0, 3],
[4, 0, 5]])
'''
t=torch.LongTensor([1,2,3])
torch.mv(s,t),s@t
'''
(tensor([ 9, 19]), tensor([ 9, 19]))
'''
2.1.4 torch.matmul
和torch.mm 类似,第二个也是只能dense
import torch
i = [[0, 1, 1],
[2, 0, 2]]
v = [3, 4, 5]
s = torch.sparse_coo_tensor(i, v, (2, 3))
t=torch.LongTensor([[1],[2],[3]])
torch.matmul(s,t),s@t
'''
(tensor([[ 9],
[19]]),
tensor([[ 9],
[19]]))
'''
2.2 转置
t()即可
x2,x2.to_dense()
'''
(tensor(indices=tensor([[0, 1, 1],
[1, 0, 1]]),
values=tensor([3., 4., 5.]),
size=(3, 2), nnz=3, layout=torch.sparse_coo),
tensor([[0., 3.],
[4., 5.],
[0., 0.]]))
'''
x2.t(),x2.t().to_dense()
'''
(tensor(indices=tensor([[1, 0, 1],
[0, 1, 1]]),
values=tensor([3., 4., 5.]),
size=(2, 3), nnz=3, layout=torch.sparse_coo),
tensor([[0., 4., 0.],
[3., 5., 0.]]))
'''
2.3 索引
稀疏矩阵支持整行索引,支持Sparse.matrix[row_index];
x2,x2.to_dense()
'''
(tensor(indices=tensor([[0, 1, 1],
[1, 0, 1]]),
values=tensor([3., 4., 5.]),
size=(3, 2), nnz=3, layout=torch.sparse_coo),
tensor([[0., 3.],
[4., 5.],
[0., 0.]]))
'''
x2[1],x2[1].to_dense()
'''
(tensor(indices=tensor([[0, 1]]),
values=tensor([4., 5.]),
size=(2,), nnz=2, layout=torch.sparse_coo),
tensor([4., 5.]))
'''
稀疏矩阵不支持具体位置位置索引Sparse.matrix[row_index,col_index]
x2[1][1],x2[1][1].to_dense()
2.4 相加
a = torch.sparse.FloatTensor(
torch.tensor([[0,1,2],[2,3,4]]),
torch.tensor([1,1,1]),
torch.Size([5,5]))
a.to_dense()
'''
tensor([[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
'''
a1=torch.sparse.FloatTensor(
torch.tensor([[0,3,2],[2,3,2]]),
torch.tensor([1,1,1]),
torch.Size([5,5]))
a1.to_dense()
'''
tensor([[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]])
'''
只支持sparse+sparse
torch.add(a,a1) ,torch.add(a,a1).to_dense()
'''
(tensor(indices=tensor([[0, 1, 2, 3, 2],
[2, 3, 4, 3, 2]]),
values=tensor([2, 1, 1, 1, 1]),
size=(5, 5), nnz=5, layout=torch.sparse_coo),
tensor([[0, 0, 2, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 1, 0, 1],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]]))
'''
a.add(a1),a.add(a1).to_dense()
#同理