论文笔记:FILLING THE G AP S: MULTIVARIATE TIME SERIES IMPUTATION BY GRAPH NEURAL NETWORKS

0 abstract & introduction

  • 之前的补全方法并不能很好地捕获/利用 不同sensor之间的非线性时间/空间依赖关系
  • 高效的时间序列补全方法,不仅应该考虑过去(或者未来)的数值,还应该同时考虑空间上邻近的点的测量值(这里的空间不一定是地理空间、还可能是embedding的隐空间)
    • ——>这篇文章提出了GRIN,利用GNN中的message passing 来学习时空表征,以帮助进行时间序列补全

1 preliminary

1.1 图序列

  • 某一时刻的一张图是\mathcal{G}_t=<X_t,W_t>
    • X_t \in R^{N_t \times d}表示点属性矩阵,其中第i行是第i个点在t时刻的d维属性
    • W_t \in R^{N_t \times N_t}表示邻接矩阵
    • 注意这一张图在不同时刻的拓扑关系不会变,也就是Nt=N,Wt=W
  • 吧不同时刻的图\mathcal{G}拼成一个序列,就是一个图序列

1.2 多元时间序列补全(MTSI)

  • 二元掩码矩阵M_t \in \{0,1\}^{N_t \times d}
    • 如果m_t^{i,j}为0,则表示t时刻i点的j属性没有值,反之则表示有值
  • MTSI(multivariate time series imputation)的目标是:
    • 给定一个图序列\mathcal{G}_{[t,t+T]},我们定义丢失数据重构误差:
      • \hat{x}_h^i 是重构值,\tilde{x}_h^i是ground-truth
      • \bar{M}_{[t,t+T]}表示M_{[t,t+T]}的补
      • l是逐元素的误差函数
      • <>表示内积
      • 右边的分母表示一共有多少个missing value,分子表示这些missing value对应的位置,imputation和ground-truth的区别

2 模型部分

2.1 模型整体

损失函数是每个阶段的重构误差+最终阶段的重构误差 

 2.2  时空encoder

输入上一时刻的隐藏表征H_{t-1},当前时刻的图\mathcal{G}_t,输出当前时刻的隐藏表征Ht

 

 2.2.1 MPNN

MPNN由k层message passing network组成

 2.3 个人理解

把encoder和decoder放在GRU那张图里面,我觉得可以这么理解:

 imputation就是decoder,每一次时空encoder,我们输出Ht,它是用来补全Xt+1的(有值的还是Xt+1的内容,无值的就是Ht)

得到Xt+1之后,我们在用它和Ht,喂入时空encoder,得到t+2的Ht,即

但这样的话,还有一个问题是:X0时刻,有缺失值,怎么办》 

2.4 时间复杂度

论文中说是O(E),个人觉得是O(TEK)? 

3 实验

3.1 补全效果

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值