论文笔记:ViTGAN: Training GANs with Vision Transformers

2021

1 intro

  • 论文研究的问题是:ViT是否可以在不使用卷积或池化的情况下完成图像生成任务
    • 即不用CNN,而使用ViT来完成图像生成任务
  • 将ViT架构集成到GAN中,发现现有的GAN正则化方法与self-attention机制的交互很差,导致训练过程中严重的不稳定
    • ——>引入了新的正则化技术来训练带有ViT的GAN
    • ViTGAN模型远优于基于Transformer的GAN模型,在不使用卷积或池化的情况下,性能与基于CNN的GAN(如Style-GAN2)相当
    • ViTGAN模型是首个在GAN中利用视觉Transformer的模型之一

2 方法

  • 直接使用ViT作为鉴别器会使训练变得不稳定。
    • 论文对生成器和鉴别器都引入了新的技术,用来稳定训练动态并促进收敛。
      • (1)ViT鉴别器的正则化;
      • (2)生成器的新架构

 2.1 ViT鉴别器的正则化

  • 利普希茨连续(Lipschitz continuity)在GAN鉴别器中很重要
  • 然而,最近的一项工作表明,标准dot product self-attention层的Lipschitz常数可以是无界的,使Lipschitz连续在ViTs中被违反。
    • —>1,用欧氏距离代替点积相似度
    • —>2,在初始化时将每层的归一化权重矩阵与spectral norm相乘
      • 对于任意矩阵 A,其Spectral Norm定义为:
        • 也可以定义为矩阵 A 的最大奇异值
        • σ计算矩阵的Spectral Norm

2.2 设计生成器

3  实验

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值