机器学习笔记:linear scaling learning rate (学习率 和batch size的关系)

文章探讨了在神经网络训练中,随着batchsize的增大,虽然处理速度提升但所需epoch增多。同时指出,使用大batchsize可能导致验证准确率下降,提出线性缩放学习率策略以平衡。增大batchsize时,需调整学习率以保持收敛效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 在训练神经网络的过程中,随着batch size的增大,处理相同数据量的速度会越来越快,但是达到相同精度所需要的epoch数量越来越多
    • 换句话说,使用相同的epoch数量时,大batch size训练的模型与小batch size训练的模型相比,验证准确率会减小
  • ——>提出了linear scaling learning rate
    • 在mini-batch SGD训练时,增大batch size不会改变梯度的期望,但是会降低它的方差
    • ——>batch size 增加时,增大学习率来加快收敛
      • eg,batch size为256时选择的学习率是0.1,当我们把batch size变为一个较大的数b时,学习率应该变为 0.1 × b/256
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值