1 灾难性遗忘介绍
- 当神经网络被训练去学习新的任务时,它可能会完全忘记如何执行它以前学过的任务。
- 这种现象尤其在所谓的“连续学习”(continuous learning)或“增量学习”(incremental learning)场景中很常见
2 不同视角下看待灾难性遗忘 以及对应的解决方法
2.1 从梯度的视角
2.1.1 从梯度的视角看灾难性遗忘
- 我们有两个不同任务的损失曲面,用平滑的曲面训练完之后,再在坑坑洼洼的曲面上继续训练
- 在第二个任务上训练完之后,最优点沿着红色的箭头移动(向第二个任务平滑曲面的山峰移动),相当于向第一个任务(平滑曲面)的底部走了
- ——>第一个任务的损失越来越高,效果越来越差,这就是灾难性遗忘
2.1.2 从梯度的视角解决灾难性遗忘(1)——找到联通路径
[1803.00885] Essentially No Barriers in Neural Network Energy Landscape (arxiv.org) 【ICML2018】中提到,神经网络