深度学习笔记:灾难性遗忘

本文探讨了神经网络在学习新任务时可能出现的灾难性遗忘现象,从梯度、权重和仿生学三个角度分析了这一问题,并介绍了相应的解决策略,如利用联通路径、调整权重和借鉴生物学习机制进行复习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 灾难性遗忘介绍

  • 当神经网络被训练去学习新的任务时,它可能会完全忘记如何执行它以前学过的任务。
  • 这种现象尤其在所谓的“连续学习”(continuous learning)或“增量学习”(incremental learning)场景中很常见

2 不同视角下看待灾难性遗忘 以及对应的解决方法

2.1 从梯度的视角

2.1.1 从梯度的视角看灾难性遗忘

  • 我们有两个不同任务的损失曲面,用平滑的曲面训练完之后,再在坑坑洼洼的曲面上继续训练

  • 在第二个任务上训练完之后,最优点沿着红色的箭头移动(向第二个任务平滑曲面的山峰移动),相当于向第一个任务(平滑曲面)的底部走了
    • ——>第一个任务的损失越来越高,效果越来越差,这就是灾难性遗忘

2.1.2 从梯度的视角解决灾难性遗忘(1)——找到联通路径

[1803.00885] Essentially No Barriers in Neural Network Energy Landscape (arxiv.org) 【ICML2018】中提到,神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值