论文笔记:UrbanGPT: Spatio-Temporal Large Language Models

UrbanGPT旨在通过集成时空依赖性编码器和指令调优,解决城市感知中的数据稀缺问题,尤其在零样本场景下展现优越的泛化能力。实验结果证实了其在时空预测任务中的有效性,超越了现有基准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 intro

时空预测的目标是预测并洞察城市环境随时间和空间不断变化的动态。其目的是预见城市生活多个方面的未来模式、趋势和事件,包括交通、人口流动和犯罪率。虽然已有许多努力致力于开发神经网络技术,以准确预测时空数据,但重要的是要注意,许多这些方法严重依赖于拥有足够的标记数据来生成精确的时空表示

不幸的是,数据稀缺问题在实际的城市感知场景中普遍存在。在某些情况下,从下游场景收集任何标记数据变得具有挑战性,这进一步加剧了问题。

因此,建立一个能在多种时空学习场景中表现出强大泛化能力的时空模型变得必要

借鉴大型语言模型(LLM)的显著成就,我们的目标是创建一个能在广泛的城市下游任务中表现出卓越泛化能力的时空LLM

为实现这一目标,我们推出了UrbanGPT,它将时空依赖性编码器与指令调优范式无缝集成。这种集成使LLM能够理解时间和空间的复杂相互依赖性,有助于在数据稀缺的情况下进行更全面、更准确的预测。

为验证我们方法的有效性,我们在多个公共数据集上进行了广泛的实验,涵盖了不同的时空预测任务。结果一致表明,我们精心设计的架构的UrbanGPT始终优于最先进的基准。这些发现突显了为时空学习构建大型语言模型的潜力,特别是在标记数据稀缺的零样本场景中

2 现有挑战

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值