基于深度学习从omics数据中获取基因的解释

基于深度学习的 AI 模型目前代表了基因组学研究中进行功能预测的最新技术。然而,预测模型做出此类预测的原因往往是未知的。对于基因组学研究人员来说,这些缺失的解释信息往往比预测本身更有价值,因为它可以从数据驱动角度提供遗传过程的新见解。作者回顾了可解释人工智能 (xAI) 这一新兴领域的进展,这一领域有可能让生命科学研究人员获得对复杂深度学习模型的机制洞察。

来自:Obtaining genetics insights from deep learning via explainable artificial intelligence, Nature Reviews Genetics, 2022

深度学习凭借其出色的性能对遗传学研究产生了重大影响,然而,由于其复杂性,它通常被视为“黑匣子”。随着越来越多的数据以低成本生成,人工智能正在实现从调控基因组注释到单细胞数据分类的各种预测任务。通过了解作为此类成功预测基础的大规模数据属性,我们有望对正在研究的生物过程获得更深入的洞察。在过去的几年中,允许此类洞察的解释技术在可解释人工智能 (xAI) 领域迅速涌现。

深度学习模型可以学习复杂的模式。例如,在确定人类基因组中的哪些 DNA 序列指导特定细胞类型中的基因转录时,模型可能正在学习序列组成(例如,GC 含量)、特定基序模式(转录因子 (TF)的结合位点)的存在与否、染色质的局部可及性、特征之间的正或负相互作用,或超出我们当前知识状态的属性。为了学习庞大而复杂的特征集,模型需要学习数百万个参数,这些参数共同决定模型预测,但目前一直不能提供有关如何做出预测的解释。

在本综述中,作者对主要的 xAI 方法进行了概述,旨在帮助从事遗传学各个主题研究的研究人员将 xAI 纳入他们的研究中。该文专注于事后解释&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值