Py之easydict:easydict的简介、安装、使用方法之详细攻略

Py之easydict:easydict的简介、安装、使用方法之详细攻略

 

 

目录

easydict的简介

easydict的安装

easydict的使用方法


 

 

 

easydict的简介

         EasyDict允许访问dict值作为属性(递归工作)。python dicts的类似Javascript的属性点表示法。

 

 

 

easydict的安装

pip install easydict

 

 

 

easydict的使用方法

>>> from easydict import EasyDict as edict
>>> d = edict({'foo':3, 'bar':{'x':1, 'y':2}})
>>> d.foo
3
>>> d.bar.x
1

>>> d = edict(foo=3)
>>> d.foo
3


>>> from easydict import EasyDict as edict
>>> from simplejson import loads
>>> j = """{
"Buffer": 12,
"List1": [
    {"type" : "point", "coordinates" : [100.1,54.9] },
    {"type" : "point", "coordinates" : [109.4,65.1] },
    {"type" : "point", "coordinates" : [115.2,80.2] },
    {"type" : "point", "coordinates" : [150.9,97.8] }
]
}"""
>>> d = edict(loads(j))
>>> d.Buffer
12
>>> d.List1[0].coordinates[1]
54.9

 

 

 

 

 

 

 

好的,关于imblearn库的安装使用,我可以为您提供以下攻略: imblearn/imbalanced-learn库简介: imblearn/imbalanced-learn是一个用于不平衡数据处理的Python库,可以帮助我们有效地应对数据不平衡问题。在机器学习和数据挖掘领域中,不平衡数据是常见的问题,也是影响模型效果的重要因素之一。imblearn库提供了一系列的方法和技术来处理不平衡数据,包括欠采样、过采样、集成方法等。 imblearn库的安装: 可以通过pip命令进行安装,具体步骤如下: 1. 打开终端或命令行窗口 2. 输入命令:pip install -U imbalanced-learn 3. 等待安装完成即可 使用imblearn库: 在导入库后,我们可以调用其中的函数和方法来处理不平衡数据。下面是一些常用的函数和方法: 1. RandomUnderSampler:欠采样方法,可以随机删除多数类样本 2. RandomOverSampler:过采样方法,可以随机复制少数类样本 3. SMOTE:一种合成数据的过采样方法,可以根据少数类样本生成新数据 4. Ensemble methods:集成方法,如EasyEnsemble、BalanceCascade等,可以通过组合多个分类器来处理不平衡数据 使用方法示例: ```python from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE # 使用RandomUnderSampler进行欠采样 rus = RandomUnderSampler(random_state=0) X_resampled, y_resampled = rus.fit_resample(X, y) # 使用RandomOverSampler进行过采样 ros = RandomOverSampler(random_state=0) X_resampled, y_resampled = ros.fit_resample(X, y) # 使用SMOTE进行过采样 smote = SMOTE(random_state=0) X_resampled, y_resampled = smote.fit_resample(X, y) ``` 以上就是关于imblearn库的简介安装使用方法攻略,希望能够对您有所帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值