DL之Transformer:Transformer的简介(优缺点/架构详解,基于Transformer的系列架构对比分析)、使用方法(NLP领域/CV领域)、案例应用之详细攻略
目录
NLP/CV:Seq2Seq(应用/思想)→Encoder-Decoder(架构)→Seq2Seq with Attention算法——E-D架构的简介(背景/简介/本质/原理等)、案例应用之详细攻略
DL之Attention:Attention注意力机制算法的起源与盛行及其长距离有效的原因、概述(背景/本质/与ED框架关系/架构/优缺点/扩展,理解,本质,变种)、案例应用(CV/NLP)之详细攻略
DL之self-attention:self-attention自注意力机制的简介(背景、特点、改进对比、传统对比、关系、应用,适合长距离捕获分析)、计算过程(八大步骤)、案例应用之详细攻略
Paper:Transformer模型起源—2017年的Google机器翻译团队—《Transformer:Attention Is All You Need》翻译并解读-20171206版
Paper:Transformer模型起源—2017年的Google机器翻译团队—《Transformer:Attention Is All You Need》翻译并解读-20230802版
Paper:《The Illustrated Transformer》翻译与解读
LLMs之Transformer:《The Transformer model family—Transformer 模型家族》翻译与解读
DL之Transformer:Transformer的简介(优缺点/架构详解,基于Transformer的系列架构对比分析)、使用方法(NLP领域/CV领域)、案例应用之详细攻略
NLP之Transformer:Transformer架构详解之Encoder(位置编码/多头注意力/Position-Wise前馈网络/层归一化)、Decoder(Masked多头注意力)之详细攻略
NLP之LLMs:Transformer的六大核心技术点(ED/SA/MHA/PE/FNN/RC-LN)、两大划时代性模型(BERT模型对比GPT模型)、三类基础架构及其代表性算法之详细攻略
2.1、Transformer 模型结构整体解剖图、流程图如下所示
NLP之Transformer:Transformer架构详解之Encoder(位置编码/多头注意力/Position-Wise前馈网络/层归一化)、Decoder(Masked多头注意力)之详细攻略
3.1、基于Transformers模型提高效率的五大类总结
3.2、高效Efficient Transformers模型的计算效率、存储效率及其复杂度对比
3.3、基于Transformer的三类基础架构及其代表性算法
PTMs:预训练大模型算法衍生发展图及其参数对比、基于Transformer的三类基础架构及其代表性算法(BERT/RoBERTa/ALBERT/T5、GPT系列、XLNet/T-NLG)之详细攻略
DL之Transformer:《The Annotated Transformer带注释的变压器》的翻译与解读—思路步骤及实现代码
1、基于Transformer架构在NLP自然语言处理领域的发展
2、基于Transformer架构在CV计算机视觉领域的发展
AI之Transformer:Transformer在CV计算机视觉领域的简介、代表性算法、案例应用之详细攻略
0、主要领域中的Transformer:计算机视觉/自然语言处理/音频/多模态/强化学习
LLMs之Transformer:《The Transformer model family—Transformer 模型家族》翻译与解读
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+SpatialTransformer)实现多分类预测实现
CV之IC之SpatialTransformer:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+ST)实现多分类预测案例训练过程记录
TF之Transformer:基于tensorflow和Keras框架(特征编码+Tokenizer处理文本+保存模型)针对UCI新闻数据集利用Transformer算法实现新闻文本多分类案例
PT之Transformer:基于PyTorch框架利用Transformer算法针对IMDB数据集实现情感分类的应用案例代码解析