AI之HardWare:人工智能领域之大模型部署硬件配置的简介(人工智能超算的GPU运算服务器硬件配置)、经验案例

AI之HardWare:人工智能领域之大模型部署硬件配置的简介(人工智能超算的GPU运算服务器硬件配置)、经验案例

目录

相关文章

AI之HardWare:人工智能领域之大模型部署两大设计方案(本地搭建服务器+调用云厂商服务)、服务器和硬件相关技术的简介(GPU/TPU、GeForce【3090-4090】/Tesla【A800-A100/V100】)、服务器搭建(GPU集群、节点、GPU卡/显卡)之详细攻略

大模型部署硬件配置

人工智能超算的GPU运算服务器硬件配置案例:8* A100-80G

大模型训练服务器集群服务器硬件配置案例:8* A800-80G

准系统:8*4090-24G


相关文章

AI之HardWare:人工智能领域之大模型部署两大设计方案(本地搭建服务器+调用云厂商服务)、服务器和硬件相关技术的简介(GPU/TPU、GeForce【3090-4090】/Tesla【A800-A100/V100】)、服务器搭建(GPU集群、节点、GPU卡/显卡)之详细攻略

AI:人工智能领域之大模型部署两大设计方案(本地搭建服务器+调用云厂商服务)、服务器和硬件相关技术的简介(GPU/TPU、GeForce【3090-4090】/Tesla【A800-A100/V100_ai服务器 方案-CSDN博客

大模型部署硬件配置

人工智能超算的GPU运算服务器硬件配置案例:8* A100-80G

型号

个数

服务器平台

超微4U机架式8KGPU系统

可支持8个GPU显卡和4个冗余电源

GPU

NVIDIA显卡A100-80G

6张,总容量共计480G显存

CPU

采用AMD霄龙7702,64核心128线程

2颗

内存

内存三星64G DDR4 ECC

8条,总容量共计512G内存

硬盘

英特尔1.92T企业级SSD

8个

电源

2000瓦电源模块

4组,2+2冗余

散热器

塔式5导管散热器

2个

阵列卡

SAS 12GB RAID1O阵列卡

1个

网卡

NTL10G万兆网卡

1个

大模型训练服务器集群服务器硬件配置案例:8* A800-80G

型号

个数

服务器平台

GPU

NVIDIA显卡A800-80G

8张,总容量共计640G显存

CPU

内存

内存条960G

2块

硬盘

4T NVME 固态硬盘

2个

电源

3000瓦电源模块

4组

散热器

风扇

6组

阵列卡

网卡

200G IB网卡

1个

准系统8*4090-24G

型号

个数

服务器平台

准系统Barebone System

主板:超微SuperMicro主板支持8个PCIE4.0接口

电源:热插拔CRPS冗余电源模块

机箱:宽482.6mmx深650mmx高177.8mm(4U)

GPU

NVIDIA显卡GeForce RTX 4090-24G 涡轮公版

8张

CPU

英特尔至强三代铂金Intel Xeon 8352V 36核2.2GHz

2个

内存

服务器版DDR4 64G 2400MHz

2块

硬盘

SSD企业级480G固态、SSD企业级1.92T NVME

2个

电源

散热器

阵列卡

网卡

10G万兆网卡-双光口模块

1个

### Qwen 和 DeepSeek 各类模型的硬件配置要求 对于不同规模的大模型,在实际部署过程中,其对计资源的需求差异显著。以下是针对Qwen和DeepSeek系列模型的具体硬件配置建议。 #### Qwen 模型硬件配置 - **Qwen2.5-Coder-7B** - GPU:单张 NVIDIA A100 或 V100 (32GB显存),用于推理加速[^3]。 - CPU:多核高性能处理器,推荐 Intel Xeon Gold 或同等性能级别。 - RAM:至少64 GB DDR4内存,以确保足够的数据缓存空间。 - 存储:SSD固态硬盘,容量需覆盖模型参数文件大小及其工作集。 #### DeepSeek 模型硬件配置 根据不同应用场景下的需求特点以及模型复杂度的不同,DeepSeek提供了多种规格的选择: - **轻量化模型(1.5B, 7B)** - 推荐GPU:NVIDIA RTX 3090/4090 或者 Tesla T4 即可胜任大多数任务。 - CPU:主流级别的Intel Core i7/i9或AMD Ryzen 7及以上。 - 内存:最低32GB DRAM,理想情况下应配备更多RAM来提升整体效率。 - **中等规模模型(8B~14B)** - 建议采用双卡甚至四卡A100集群架构来进行高效训练与推理操作。 - 对于CPU而言,同样倾向于选用高端服务器级产品线中的成员。 - 至少拥有128GB以上的物理内存才能保证稳定运行并减少页面交换带来的延迟影响。 - **大型模型(32B~70B)** - 需要更强大的支撑,通常会依赖于专门构建的数据中心环境内由数十乃至上百片顶级AI专用芯片组成的超级计机系统完成运算作业。 - 此外还需考虑网络带宽、存储子系统的吞吐能等因素,因为这些都会直接影响到最终的服务质量表现。 - **超大规模模型(671B+)** - 这种级别的模型几乎只存在于理论探讨阶段或是极少数资金雄厚的研究机构内部实验项目里,它们往往伴随着极其苛刻的技术指标约束条件,比如定制化的ASIC/FPGA解决方案配合海量分布式节点协同工作的模式才有可能实现预期目标。 ```python # Python伪代码展示如何检查当前设备是否满足特定型号的要求 def check_hardware_requirements(model_size): import torch device = "cuda" if torch.cuda.is_available() else "cpu" requirements = { 'light': {'gpu_memory': 24, 'ram': 32}, # For models like 1.5B and 7B 'medium': {'gpu_memory': 40, 'ram': 128}, # For models between 8B to 14B 'large': {'gpu_memory': 80, 'ram': 256} # For larger models from 32B upwards } current_gpu_mem = torch.cuda.get_device_properties(device).total_memory / (1024**3) if model_size not in requirements: raise ValueError(f"No predefined requirement for {model_size}") reqs = requirements[model_size] print(f"Checking hardware... Current GPU Memory: {current_gpu_mem:.2f}GB") if all([reqs['gpu_memory'] <= current_gpu_mem, reqs['ram'] <= psutil.virtual_memory().available/(1024**3)]): return True else: return False ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值