LLMs之Wiseflow:Wiseflow的简介、安装和使用方法、案例应用之详细攻略

LLMs之Wiseflow:Wiseflow的简介、安装和使用方法、案例应用之详细攻略

目录

Wiseflow的简介

1、更新信息

2、功能特色

3、wiseflow 与常见的爬虫工具、LLM-Agent类项目有何不同与关联?

Wiseflow的安装和使用方法

1、安装与使用

克隆代码仓库

2、使用方法

强烈推荐使用docker 运行

【备选】直接使用python运行

配置

模型推荐

关注点和定时扫描信源添加

3、本地部署

Wiseflow的案例应用


Wiseflow的简介

首席情报官(Wiseflow)是一个敏捷的信息挖掘工具,可以从网站、微信公众号、社交平台等各种信息源中按设定的关注点提炼讯息,自动做标签归类并上传数据库。

SiliconFlow官宣Qwen2-7B-Instruct、glm-4-9b-chat等数款LLM在线推理服务即日起免费,这意味着您可以“零成本”使用首席情报官进行信息挖掘啦!

我们缺的其实不是信息,我们需要的是从海量信息中过滤噪音,从而让有价值的信息显露出来!

看看首席情报官是如何帮您节省时间,过滤无关信息,并整理关注要点的吧!

GitHub地址:GitHub - TeamWiseFlow/wiseflow: Wiseflow is an agile information mining tool that extracts concise messages from various sources such as websites, WeChat official accounts, social platforms, etc. It automatically categorizes and uploads them to the database.

1、更新信息

V0.3.0 重大更新

✅ 全新改写的通用网页内容解析器,综合使用统计学习(依赖开源项目GNE)和LLM,适配90%以上的新闻页面;

✅ 全新的异步任务架构;

✅ 全新的信息提取和标签分类策略,更精准、更细腻,且只需使用9B大小的LLM就可完美执行任务!

2、功能特色

>> 原生 LLM 应用:我们精心选择了最适合的 7B~9B 开源模型,最大化降低使用成本,且利于数据敏感用户随时完全切换至本地部署。

>> 轻量化设计:不用任何向量模型,系统开销很小,无需 GPU,适合任何硬件环境。

>> 智能信息提取和分类:从各种信息源中自动提取信息,并根据用户关注点进行标签化和分类管理。

>> WiseFlow尤其擅长从微信公众号文章中提取信息,为此我们配置了mp article专属解析器!

>> 可以被整合至任意Agent项目:可以作为任意 Agent 项目的动态知识库,无需了解wiseflow的代码,只需要与数据库进行读取操作即可!

>> 流行的 Pocketbase 数据库:数据库和界面使用 PocketBase,除了 Web 界面外,目前已有 Go/Javascript/Python 等语言的SDK。

3、wiseflow 与常见的爬虫工具、LLM-Agent类项目有何不同与关联?

特点 首席情报官(Wiseflow) Crawler / Scraper LLM-Agent

主要解决的问题 数据处理(筛选、提炼、贴标签) 原始数据获取 下游应用

关联 可以集成至WiseFlow,使wiseflow具有更强大的原始数据获取能力 可以集成WiseFlow,作为动态知识库

Wiseflow的安装和使用方法

1、安装与使用

首席情报官对于硬件基本无要求,系统开销很小,无需独立显卡和CUDA(使用在线LLM服务的情况下)

克隆代码仓库

git clone https://github.com/TeamWiseFlow/wiseflow.git

cd wiseflow

2、使用方法

强烈推荐使用docker 运行

中国区用户使用前请合理配置网络,或者指定docker hub镜像

docker compose up

可按需修改compose.yaml

注意:

在wiseflow代码仓根目录下运行上述命令;

运行前先创建并编辑.env文件放置在Dockerfile同级目录(wiseflow代码仓根目录),.env文件可以参考env_sample

第一次运行docker container时会遇到报错,这其实是正常现象,因为你尚未为pb仓库创建admin账号。

此时请保持container不关闭状态,浏览器打开http://127.0.0.1:8090/_/ ,按提示创建admin账号(一定要使用邮箱),然后将创建的admin邮箱(再次强调,一定要用邮箱)和密码填入.env文件,重启container即可。

如您想更改container的时区和语言【会决定prompt语言选择,但实测对呈现结果影响不大】,使用如下命令运行image

docker run -e LANG=zh_CN.UTF-8 -e LC_CTYPE=zh_CN.UTF-8 your_image

【备选】直接使用python运行

conda create -n wiseflow python=3.10

conda activate wiseflow

cd core

pip install -r requirements.txt

之后可以参考core/scripts 中的脚本分别启动pb、task和backend (将脚本文件移动到core目录下)

注意:

一定要先启动pb,task和backend是独立进程,先后顺序无所谓,也可以按需求只启动其中一个;

需要先去这里 https://pocketbase.io/docs/ 下载对应自己设备的pocketbase客户端,并放置在 /core/pb 目录下

pb运行问题(包括首次运行报错等)参考 core/pb/README.md

使用前请创建并编辑.env文件,放置在wiseflow代码仓根目录(core目录的上级),.env文件可以参考env_sample,详细配置说明见下

�� for developer, see /core/README.md for more

通过 pocketbase 访问获取的数据:

http://127.0.0.1:8090/_/ - Admin dashboard UI

http://127.0.0.1:8090/api/ - REST API

配置

复制目录下的env_sample,并改名为.env, 参考如下 填入你的配置信息(LLM服务token等)

windows用户可以直接在 “开始 - 设置 - 系统 - 关于 - 高级系统设置 - 环境变量“ 中设置如下项目,设置后需要重启终端生效

LLM_API_KEY # 大模型推理服务API KEY

LLM_API_BASE # 本项目依赖openai sdk,只要模型服务支持openai接口,就可以通过配置该项正常使用,如使用openai服务,删除这一项即可

WS_LOG="verbose" # 设定是否开始debug观察,如无需要,删除即可

GET_INFO_MODEL # 信息提炼与标签匹配任务模型,默认为 gpt-3.5-turbo

REWRITE_MODEL # 近似信息合并改写任务模型,默认为 gpt-3.5-turbo

HTML_PARSE_MODEL # 网页解析模型(GNE算法效果不佳时智能启用),默认为 gpt-3.5-turbo

PROJECT_DIR # 数据、缓存以及日志文件存储位置,相对于代码仓的相对路径,默认不填就在代码仓

PB_API_AUTH='email|password' # pb数据库admin的邮箱和密码(注意一定是邮箱,可以是虚构的邮箱)

PB_API_BASE # 正常使用无需这一项,只有当你不使用默认的pocketbase本地接口(8090)时才需要

模型推荐

经过反复测试(中英文任务),综合效果和价格,GET_INFO_MODEL、REWRITE_MODEL、HTML_PARSE_MODEL 三项我们分别推荐 "zhipuai/glm4-9B-chat"、"alibaba/Qwen2-7B-Instruct"、"alibaba/Qwen2-7B-Instruct"

它们可以非常好的适配本项目,指令遵循稳定且生成效果优秀,本项目相关的prompt也是针对这三个模型进行的优化。(HTML_PARSE_MODEL 也可以使用 "01-ai/Yi-1.5-9B-Chat",实测效果也非常棒)

⚠️ 同时强烈推荐使用 SiliconFlow 的在线推理服务,更低的价格、更快的速度、更高的免费额度!⚠️

SiliconFlow 在线推理服务兼容openai SDK,并同时提供上述三个模型的开源服务,仅需配置 LLM_API_BASE 为 "https://api.siliconflow.cn/v1" ,并配置 LLM_API_KEY 即可使用。

�� 或者您愿意使用我的邀请链接,这样我也可以获得更多token奖励 ��

关注点和定时扫描信源添加

启动程序后,打开pocketbase Admin dashboard UI (http://127.0.0.1:8090/_/)

 6.1 打开 **tags表单**

 通过这个表单可以指定你的关注点,LLM会按此提炼、过滤并分类信息。

 tags 字段说明:

 - name, 关注点描述,**注意:要具体一些**,好的例子是:`中美竞争动向`,不好的例子是:`国际局势`。

 - activated, 是否激活。如果关闭则会忽略该关注点,关闭后可再次开启。开启和关闭无需重启docker容器,会在下一次定时任务时更新。

 6.2 打开 **sites表单**

 通过这个表单可以指定自定义信源,系统会启动后台定时任务,在本地执行信源扫描、解析和分析。

 sites 字段说明:

 - url, 信源的url,信源无需给定具体文章页面,给文章列表页面即可。

 - per_hours, 扫描频率,单位为小时,类型为整数(1~24范围,我们建议扫描频次不要超过一天一次,即设定为24)

 - activated, 是否激活。如果关闭则会忽略该信源,关闭后可再次开启。开启和关闭无需重启docker容器,会在下一次定时任务时更新。

3、本地部署

如您所见,本项目使用7b\9b大小的LLM,且无需任何向量模型,这就意味着仅仅需要一块3090RTX(24G显存)就可以完全的对本项目进行本地化部署。

请保证您的本地化部署LLM服务兼容openai SDK,并配置 LLM_API_BASE 即可

Wiseflow的案例应用

持续更新中……

### Wiseflow Installation Guide For users interested in utilizing the capabilities of Wiseflow, understanding how to install this tool is essential. Wiseflow can be installed following a series of specific instructions that ensure its proper setup and functionality on one's system. The installation process begins with ensuring that all prerequisites are met. This includes having Python installed as well as certain libraries which might be necessary for running Wiseflow effectively[^1]. Once these requirements are satisfied, downloading the latest version of Wiseflow from its official repository or website becomes the next step. After obtaining the software package, executing an installer script typically initiates configuration procedures tailored towards integrating Wiseflow into existing workflows seamlessly[^2]. To finalize the setup, configuring environment variables may also prove beneficial so that commands related to operating Wiseflow can be recognized globally within the computing environment. Additionally, verifying successful deployment through initial tests using sample data sets provided by developers ensures everything operates correctly post-installation. ```bash # Example command sequence for installing dependencies before setting up Wiseflow pip install -r requirements.txt ``` --related questions-- 1. What are some common issues encountered during Wiseflow installations? 2. How does Wiseflow compare against other similar tools available today regarding ease-of-use after installation? 3. Can you provide tips for optimizing performance once Wiseflow has been successfully set up?
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值