Py之moviepy:python库之moviepy的简介、安装、使用方法详细攻略

Py之moviepy:python库之moviepy的简介、安装、使用方法详细攻略

 

 

 

目录

moviepy的简介

moviepy的安装

moviepy的使用方法

1、官方案例


 

 

moviepy的简介

       Python有些出色的数据可视化库,但很少能渲染GIF或视频动画。本文介绍如何运用MoviePy作为其他库的通用动画插件。  有了 MoviePy ,你可以用一个函数 make_frame(t) 自定义动画,并返回相应的时间t的视频帧(秒)。通过moviepy的官网看到依赖的库有Numpy,imageio, Decorator, and tqdm,而我的anaconda3安装时缺少tqdm(使用conda list能看到)

      MoviePy(全套文件)是一个用于视频编辑Python库:切割、拼接、标题插入,视频合成(即非线性编辑),视频处理和自定义效果的创造。请查看库中使用的一些示例。moviepy可以读写所有常见的音频和视频格式,如GIF,和运行在Windows / Mac / Linux,Python 2.7 + 3。这里是行动在IPython笔记本:

 

 

 

moviepy的安装

pip install moviepy

 

20200630更新

pip install --upgrade moviepy

 

 

 

moviepy的使用方法

1、官方案例

在本例中,我们打开一个视频文件,选择t=50s和t=60s之间的子剪辑,在屏幕中央添加一个标题,然后将结果写入一个新文件:

from moviepy.editor import *

video = VideoFileClip("myHolidays.mp4").subclip(50,60)

# Make the text. Many more options are available.
txt_clip = ( TextClip("My Holidays 2013",fontsize=70,color='white')
             .set_position('center')
             .set_duration(10) )

result = CompositeVideoClip([video, txt_clip]) # Overlay text on video
result.write_videofile("myHolidays_edited.webm",fps=25) # Many options...

 

 

 

 

 

 

 

 

 

好的,关于imblearn安装使用,我可以为您提供以下攻略: imblearn/imbalanced-learn简介: imblearn/imbalanced-learn是一个用于不平衡数据处理的Python,可以帮助我们有效地应对数据不平衡问题。在机器学习和数据挖掘领域中,不平衡数据是常见的问题,也是影响模型效果的重要因素之一。imblearn提供了一系列的方法和技术来处理不平衡数据,括欠采样、过采样、集成方法等。 imblearn安装: 可以通过pip命令进行安装,具体步骤如下: 1. 打开终端或命令行窗口 2. 输入命令:pip install -U imbalanced-learn 3. 等待安装完成即可 使用imblearn: 在导入后,我们可以调用其中的函数和方法来处理不平衡数据。下面是一些常用的函数和方法: 1. RandomUnderSampler:欠采样方法,可以随机删除多数类样本 2. RandomOverSampler:过采样方法,可以随机复制少数类样本 3. SMOTE:一种合成数据的过采样方法,可以根据少数类样本生成新数据 4. Ensemble methods:集成方法,如EasyEnsemble、BalanceCascade等,可以通过组合多个分类器来处理不平衡数据 使用方法示例: ```python from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE # 使用RandomUnderSampler进行欠采样 rus = RandomUnderSampler(random_state=0) X_resampled, y_resampled = rus.fit_resample(X, y) # 使用RandomOverSampler进行过采样 ros = RandomOverSampler(random_state=0) X_resampled, y_resampled = ros.fit_resample(X, y) # 使用SMOTE进行过采样 smote = SMOTE(random_state=0) X_resampled, y_resampled = smote.fit_resample(X, y) ``` 以上就是关于imblearn简介安装使用方法攻略,希望能够对您有所帮助。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值