Keras之MLP:利用MLP【Input(8)→(12)(relu)→O(sigmoid+二元交叉)】模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测
目录
输出结果

![]()
实现代码
# load and prepare the dataset
dataset = numpy.loadtxt("data/pima-indians-diabetes.csv", delimiter=",")
X = dataset[:,0:8]
Y = dataset[:,8]
# 1. define the network
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# 2. compile the network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 3. fit the network
history = model.fit(X, Y, epochs=100, batch_size=10)
# 4. evaluate the network
loss, accuracy = model.evaluate(X, Y)
print("\nLoss: %.2f, Accuracy: %.2f%%" % (loss, accuracy*100))
# 5. make predictions
probabilities = model.predict(X)
predictions = [float(numpy.round(x)) for x in probabilities] #numpy.round
accuracy = numpy.mean(predictions == Y)
print("Prediction Accuracy: %.2f%%" % (accuracy*100))
Keras MLP糖尿病预测

本文介绍如何使用Keras搭建MLP神经网络模型,通过糖尿病数据集的八个特征进行二分类预测。模型结构包括输入层(8节点)、隐藏层(12节点,ReLU激活)和输出层(1节点,Sigmoid激活),并采用二元交叉熵损失函数和Adam优化器。通过100次迭代训练,模型在测试集上达到较高的准确率。
223

被折叠的 条评论
为什么被折叠?



