Keras之MLP:利用MLP【Input(8)→(12)(relu)→O(sigmoid+二元交叉)】模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测

Keras MLP糖尿病预测
本文介绍如何使用Keras搭建MLP神经网络模型,通过糖尿病数据集的八个特征进行二分类预测。模型结构包括输入层(8节点)、隐藏层(12节点,ReLU激活)和输出层(1节点,Sigmoid激活),并采用二元交叉熵损失函数和Adam优化器。通过100次迭代训练,模型在测试集上达到较高的准确率。

Keras之MLP:利用MLP【Input(8)→(12)(relu)→O(sigmoid+二元交叉)】模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测

 

 

目录

输出结果

实现代码


 

 

 

输出结果

 

实现代码


# load and prepare the dataset
dataset = numpy.loadtxt("data/pima-indians-diabetes.csv", delimiter=",")
X = dataset[:,0:8]
Y = dataset[:,8]
 
# 1. define the network
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
 
# 2. compile the network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
 
# 3. fit the network
history = model.fit(X, Y, epochs=100, batch_size=10)
 
# 4. evaluate the network
loss, accuracy = model.evaluate(X, Y)
print("\nLoss: %.2f, Accuracy: %.2f%%" % (loss, accuracy*100))
 
# 5. make predictions
probabilities = model.predict(X)
predictions = [float(numpy.round(x)) for x in probabilities]  #numpy.round
accuracy = numpy.mean(predictions == Y)
print("Prediction Accuracy: %.2f%%" % (accuracy*100))

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值