1. 原理分析
带隙电压基准的基本原理是将两个相反温度系数的电压相加,最终获得具有零温度系数的基准电压。例如,电压V+拥有正温度系数,电压V-拥有负温度系数,选择合适的m和n,使得满足:
m
∂
V
+
∂
T
+
n
∂
V
−
∂
T
=
0
m\frac {\partial V_+}{\partial T}+n\frac {\partial V_-}{\partial T} =0
m∂T∂V++n∂T∂V−=0
● 负温度系数电压来自于双极性晶体管:
V
B
E
=
V
T
l
n
I
C
I
S
I
S
=
b
T
4
+
m
e
−
E
g
k
T
∂
V
B
E
∂
T
=
V
B
E
−
(
4
+
m
)
V
T
−
E
g
/
q
T
\begin{aligned} & V_{BE} = V_Tln{\frac {I_C}{I_S}}\\[2ex] & I_S = bT^{4+m}e^{\frac{-E_g}{kT}}\\[2ex] \frac {\partial V_{BE}}{\partial T} =& \frac{V_{BE}-(4+m)V_T-E_g/q}{T} \end{aligned}
∂T∂VBE=VBE=VTlnISICIS=bT4+mekT−EgTVBE−(4+m)VT−Eg/q
当T=300K时:
V
B
E
=
600
m
V
⇒
∂
V
B
E
∂
T
≈
−
2.2
m
V
/
℃
V
B
E
=
700
m
V
⇒
∂
V
B
E
∂
T
≈
−
1.9
m
V
/
℃
\begin{aligned} V_{BE} = 600mV\ ⇒\ \ \frac {\partial V_{BE}}{\partial T}≈-2.2mV/℃ \\[2ex] V_{BE} = 700mV\ ⇒\ \ \frac {\partial V_{BE}}{\partial T}≈-1.9mV/℃ \end{aligned}
VBE=600mV ⇒ ∂T∂VBE≈−2.2mV/℃VBE=700mV ⇒ ∂T∂VBE≈−1.9mV/℃
● 正温度系数电压来自于热电压VT:
Δ
V
B
E
=
V
T
l
n
I
C
2
I
S
2
−
V
T
l
n
I
C
1
I
S
1
=
V
T
l
n
I
C
2
I
C
1
I
S
1
I
S
2
=
V
T
l
n
N
=
k
T
q
l
n
N
\begin{aligned} ΔV_{BE} &= V_Tln{\frac {I_{C2}}{I_{S2}}}-V_Tln{\frac {I_{C1}}{I_{S1}}} \\[2.5ex] &=V_Tln{\frac {I_{C2}}{I_{C1}}\frac {I_{S1}}{I_{S2}}} =V_TlnN =\frac {kT}{q}lnN \end{aligned}
ΔVBE=VTlnIS2IC2−VTlnIS1IC1=VTlnIC1IC2IS2IS1=VTlnN=qkTlnN
如果取IC1=IC2的话,N为两个双极型晶体管的尺寸比例。
∂
Δ
V
B
E
∂
T
=
k
q
l
n
N
=
k
T
0
q
T
0
l
n
N
=
V
T
0
T
0
l
n
N
=
26
m
V
300
K
l
n
N
≈
0.087
⋅
l
n
N
m
V
/
℃
\begin{aligned} \frac {\partial ΔV_{BE}}{\partial T} &=\frac {k}{q}lnN \\[2.5ex] &=\frac {kT_0}{qT_0}lnN =\frac {V_{T0}}{T_0}lnN \\[2.5ex] &=\frac {26mV}{300K}lnN≈0.087·lnN\ \ mV/℃ \end{aligned}
∂T∂ΔVBE=qklnN=qT0kT0lnN=T0VT0lnN=300K26mVlnN≈0.087⋅lnN mV/℃
●如果将正负温度系数的电压相加,即可近似抵消温度变化带来的影响:
V
T
+
=
V
B
E
V
T
−
=
V
T
l
n
N
V
r
e
f
=
V
B
E
+
K
V
T
l
n
N
\begin{aligned} V_{T+} &=V_{BE}\\[2ex] V_{T-} =& \ V_TlnN\\[2ex] V_{ref} =V_{BE}&+KV_TlnN \end{aligned}
VT+VT−=Vref=VBE=VBE VTlnN+KVTlnN
已经知道VBE温度系数约为-2mv/℃,VT温度系数约为0.087×lnN mv/℃.因此满足下面条件就能近似得到零温度系数的基准。
∂
V
r
e
f
∂
T
≈
−
2
+
0.087
⋅
K
l
n
N
=
0
K
l
n
N
≈
23
\begin{aligned} \frac{\partial V_{ref}}{\partial T} &≈-2+0.087·KlnN=0\\[2.5ex] KlnN&≈23 \end{aligned}
∂T∂VrefKlnN≈−2+0.087⋅KlnN=0≈23
2. 电路分析

图2.1是一个带隙基准源的一种电路结构。通过运放使X和Y点有相同的电位,Q1Q2和Q3流过的电流分别为I1I2和I3,基准输出为:
{
V
o
u
t
=
V
B
E
+
I
3
R
2
I
3
=
V
B
E
1
−
V
B
E
2
R
1
=
Δ
V
B
E
R
1
\left\{ \begin{aligned} V_{out}&=V_{BE}+I_3R_2 \\[2.5ex] I_3\ &=\frac {V_{BE1}-V_{BE2}}{R_1}=\frac {ΔV_{BE}}{R_1} \end{aligned} \right.
⎩
⎨
⎧VoutI3 =VBE+I3R2=R1VBE1−VBE2=R1ΔVBE
V o u t = V B E + Δ V B E R 1 R 2 = V B E + ( R 2 R 1 l n N ) ⋅ V T ≈ V B E + 23 ⋅ V T \begin{aligned} V_{out}&=V_{BE}+\frac {ΔV_{BE}}{R_1}R_2 \\[2.5ex] &=V_{BE}+(\frac {R_2}{R_1}lnN)·V_T \\[2.5ex] &≈V_{BE}+23·V_T \end{aligned} Vout=VBE+R1ΔVBER2=VBE+(R1R2lnN)⋅VT≈VBE+23⋅VT
3. 电路设计
图2.1的电路包括带隙基准的核心电路和运放两个部分,运放可以直接使用之前设计的电路,必要时稍作改动即可。因此这次只需要设计核心电路部分。图3.1中间分开,左边是运放,右边是带隙基准的核心电路。
① 首先给定带隙基准源三条支路电流都是0.15uA,这样就可以根据gm/id法确定三个PMOS管的参数。
② Q1Q2和Q3的尺寸为1:7:1.
③ R1决定电流大小,因此根据I2=0.15uA,扫描得到R1=341kΩ.
④ 从-40—125对温度扫描,确定最佳的R2=3.743MΩ.
4. 仿真分析
4.1.电源dc扫描

4.2.温度扫描

4.3.环路稳定性

4.4.电源抑制比
将图2.1中的运放的小信号输出记为vg3,运放增益记为A0,电源叠加的扰动记为vdd .
{
v
x
=
(
v
d
d
−
v
g
3
)
g
m
3
(
r
o
3
∥
r
o
1
)
≈
(
v
d
d
−
v
g
3
)
g
m
3
r
o
1
(
r
o
1
≪
r
o
3
)
v
y
=
(
v
d
d
−
v
g
3
)
g
m
4
[
r
o
4
∥
(
R
1
+
r
o
2
)
]
≈
(
v
d
d
−
v
g
3
)
g
m
4
R
1
(
r
o
2
≪
R
1
≪
r
o
4
)
v
g
3
=
(
v
y
−
v
x
)
A
0
g
m
3
=
g
m
4
=
g
m
5
\left\{ \begin{aligned} v_x\ &=(v_{dd}-v_{g3})g_{m3}(r_{o3}∥r_{o1}) \\[2.5ex] &≈(v_{dd}-v_{g3})g_{m3}r_{o1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( r_{o1}≪r_{o3} ) \\[2.5ex] v_y\ &=(v_{dd}-v_{g3})g_{m4}[r_{o4}∥(R_1+r_{o2})] \\[2.5ex] &≈(v_{dd}-v_{g3})g_{m4}R_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( r_{o2}≪R_1≪r_{o4}) \\[2.5ex] v_{g3}&=(v_y-v_x)A_0 \\[2.5ex] g_{m3}&=g_{m4}=g_{m5} \end{aligned} \right.
⎩
⎨
⎧vx vy vg3gm3=(vdd−vg3)gm3(ro3∥ro1)≈(vdd−vg3)gm3ro1 (ro1≪ro3)=(vdd−vg3)gm4[ro4∥(R1+ro2)]≈(vdd−vg3)gm4R1 (ro2≪R1≪ro4)=(vy−vx)A0=gm4=gm5
整理后得到运放的输出vg3和基准输出vout:
v g 3 = v d d A 0 g m 4 R 1 1 + A 0 g m 4 R 1 v o u t = ( v d d − v g 3 ) g m 5 [ r o 5 ∥ ( R 2 + r o 3 ) ] ≈ ( v d d − v g 3 ) g m 5 R 2 = v d d 1 + A 0 g m 4 R 1 g m 5 R 2 ≈ v d d R 2 A 0 R 1 \begin{aligned} &\ \ \ v_{g3}=\frac{v_{dd}A_0g_{m4}R_1}{1+A_0g_{m4}R_1} \\[2.5ex] v_{out}&=(v_{dd}-v_{g3})g_{m5}[r_{o5}∥(R_2+r_{o3})] \\[2.5ex] &≈(v_{dd}-v_{g3})g_{m5}R_2 \\[2.5ex] &=\frac{v_{dd}}{1+A_0g_{m4}R_1}g_{m5}R_2 \\[2.5ex] &≈v_{dd}\frac{R_2}{A_0R_1} \end{aligned} vout vg3=1+A0gm4R1vddA0gm4R1=(vdd−vg3)gm5[ro5∥(R2+ro3)]≈(vdd−vg3)gm5R2=1+A0gm4R1vddgm5R2≈vddA0R1R2
电源抑制比计算:
P
S
R
R
=
20
l
g
v
o
u
t
v
d
d
=
20
(
l
g
R
2
R
1
−
l
g
A
0
)
PSRR=20lg\frac{v_{out}}{v_{dd}}=20(lg\frac{R_2}{R_1}-lgA_0)
PSRR=20lgvddvout=20(lgR1R2−lgA0)
R2/R1大概在10左右,于是可以推断出PSRR的数值大概比运放低20dB多。增大三极管Q2的尺寸使lnN增大R2/R1减小,可以使PSRR有所增加。或者也可以提升运放的放大倍数增大PSRR。

PSRR仿真时,对电源从1.8V–3.3V扫描发现一个问题:PSSR的值先增大后减小,并且在VDD=2.6V的时候达到最大72dB多。
5. 疑问
PSRR仿真时,对电源从1.8V–3.3V扫描,PSSR的值先增大后减小。在VDD=2.6V的时候达到最大72dB多,而在VDD=1.8V和VDD=3.3V时只有49dB多一点。这是为什么?
图2.1的M5增益也会随电源变化。M5增益为:
G
m
5
=
g
m
5
r
o
5
∥
R
2
G_{m5}=g_{m5}r_{o5}∥R_2
Gm5=gm5ro5∥R2
当电源从1.8V–3.3V变化时gm5基本保持不变,R2<<ro5且R2固定不变,因此增益Gm5保持不变才对。但是Gm5会在0.7到10的范围内变化。这又是为什么?
Gm5最小的时候也就是PSSR最大的时候,看来M5增益对PSRR影响还是比较大的。