前言
提示:本文是YOLOv11的分割模型训练自己数据集的记录教程,需要大家在本地已配置好CUDA,cuDNN等环境,没配置的小伙伴可以查看我的往期博客:在Windows10上配置CUDA环境教程
2024年9月30日,YOLOv11
是Ultralytics
最新发布的计算机视觉模型。支持多种任务,包括目标检测、实例分割、图像分类、姿态估计、有向目标检测以及物体跟踪等,本文主要讲述其分割任务的模型搭建训练流程。
一、环境搭建
在配置好CUDA环境,并且获取到YOLOv11
源码后,建议新建一个虚拟环境专门用于YOLOv11
模型的训练。将YOLOv11
加载到环境后,安装剩余的包,连接镜像,安装更快一些。
pip install ...
二、构建数据集
YOLOv11模型的训练需要原图像及对应的YOLO格式标签,还未制作标签的可以参考我这篇文章:Labelme安装与使用教程。注意labelme的标签是json格式的,这在训练前需要将json转成yolo的txt格式,链接里提供了相关的转换代码。
将原本数据集按照8:1:1的比例划分成训练集、验证集和测试集三类,划分代码如下,注意改成自己的文件路径。我的原始数据存放在/root/ultralytics-main/data
,images里面包含全部图像,newLabel中包含打好的标签。
0 0.5655737704918032 0.460093896713615 0.5655737704918032 0.49765258215962443 0.5737704918032787 0.5352112676056338 0.5819672131147541 0.5915492957746479 0.5922131147540983 0.5821596244131455 0.5840163934426229 0.5305164319248826 0.5778688524590164 0.48826291079812206
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
# 原始路径
image_original_path = "data/images/"
label_original_path = "data/newLabel/"
cur_path = os.getcwd()
#cur_path = 'D:/image_denoising_test/denoise/'
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")
# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")
# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")
# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")
train_percent = 0.8
val_percent = 0.1
test_percent = 0.1
def del_file(path):
for i in os.listdir(path):
file_data = path + "\\" + i
os.remove(file_data)
def mkdir():
if not os.path.exists(train_image_path):
os.makedirs(train_image_path)
else:
del_file(train_image_path)
if not os.path.exists(train_label_path):
os.makedirs(train_label_path)
else:
del_file(train_label_path)
if not os.path.exists(val_image_path):
os.makedirs(val_image_path)
else:
del_file(val_image_path)
if not os.path.exists(val_label_path):
os.makedirs(val_label_path)
else:
del_file(val_label_path)
if not os.path.exists(test_image_path):
os.makedirs(test_image_path)
else:
del_file(test_image_path)
if not os.path.exists(test_label_path):
os.makedirs(test_label_path)
else:
del_file(test_label_path)
def clearfile():
if os.path.exists(list_train):
os.remove(list_train)
if os.path.exists(list_val):
os.remove(list_val)
if os.path.exists(list_test):
os.remove(list_test)
def main():
mkdir()
clearfile()
file_train = open(list_train, 'w')
file_val = open(list_val, 'w')
file_test = open(list_test, 'w')
total_txt = os.listdir(label_original_path)
num_txt = len(total_txt)
list_all_txt = range(num_txt)
num_train = int(num_txt * train_percent)
num_val = int(num_txt * val_percent)
num_test = num_txt - num_train - num_val
train = random.sample(list_all_txt, num_train)
# train从list_all_txt取出num_train个元素
# 所以list_all_txt列表只剩下了这些元素
val_test = [i for i in list_all_txt if not i in train]
# 再从val_test取出num_val个元素,val_test剩下的元素就是test
val = random.sample(val_test, num_val)
print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
for i in list_all_txt:
name = total_txt[i][:-4]
srcImage = image_original_path + name + '.jpg'
srcLabel = label_original_path + name + ".txt"
if i in train:
dst_train_Image = train_image_path + name + '.jpg'
dst_train_Label = train_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_train_Image)
shutil.copyfile(srcLabel, dst_train_Label)
file_train.write(dst_train_Image + '\n')
elif i in val:
dst_val_Image = val_image_path + name + '.jpg'
dst_val_Label = val_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_val_Image)
shutil.copyfile(srcLabel, dst_val_Label)
file_val.write(dst_val_Image + '\n')
else:
dst_test_Image = test_image_path + name + '.jpg'
dst_test_Label = test_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_test_Image)
shutil.copyfile(srcLabel, dst_test_Label)
file_test.write(dst_test_Image + '\n')
file_train.close()
file_val.close()
file_test.close()
if __name__ == "__main__":
main()
划分完成后将会在datasets
文件夹下生成划分好的文件,其中images
为划分后的图像文件,里面包含用于train
、val
、test
的图像,已经划分完成;
labels
文件夹中包含划分后的标签文件,已经划分完成,里面包含用于train
、val
、test
的标签;train.txt
、val.txt
、test.txt
中记录了各自的图像路径。
在训练过程中,也是主要使用这三个txt文件进行数据的索引。
三、修改配置文件
①数据集文件配置
数据集划分完成后,在根目录下新建data.yaml
文件,即data.yaml
,用于指明数据集路径和类别,我这边只有一个类别,只留了一个,多类别的在name
内加上类别名即可。data.yaml
中的内容为:
path: ../datasets/images # 数据集所在路径
train: train # 数据集路径下的train.txt
val: val # 数据集路径下的val.txt
test: test # 数据集路径下的test.txt
# Classes
names:
0: bubbeplume
②模型文件配置
在ultralytics/cfg/models/11
文件夹下存放的是YOLOv11分割模型的各个版本的模型配置文件,检测的类别是coco数据的80类。在训练自己数据集的时候,只需要将其中的类别数修改成自己的大小。此处以yolo11-seg.yaml
文件中的模型为例,将 nc: 1 # number of classes 修改类别数
修改成自己的类别数,如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n-seg.yaml' will call yolo11-seg.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
m: [0.50, 1.00, 512] # summary: 445 layers, 22420896 parameters, 22420880 gradients, 123.9 GFLOPs
l: [1.00, 1.00, 512] # summary: 667 layers, 27678368 parameters, 27678352 gradients, 143.0 GFLOPs
x: [1.00, 1.50, 512] # summary: 667 layers, 62142656 parameters, 62142640 gradients, 320.2 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)
修改完成后,模型文件就配置好啦。
四、模型训练和测试
YOLOv11
训练可使用命令或者代码进行运行,在训练过程中使用的具体的参数信息可在ultralytics/cfg/default.yaml
路径下找到。
首先需要将default.yaml
中的task
设置成segment
模型训练
命令训练
打开终端,输入命令
yolo task=segment mode=train model=ultralytics/cfg/models/11/yolo11-seg.yaml data=data.yaml batch=32 epochs=300 imgsz=640 workers=10 device=0
- task:表示任务为目标分割,可选detect, segment,classify
- mode:表示模式,可选train,val,predict,export
- model:表示使用的模型,这里我就是使用的刚刚新建的yolov8-mask.yaml
- data:表示训练的图像文件,
- device:表示是否使用GPU进行训练,可选0,1,2…或者cpu
- epoch:表示训练的轮次
- batch:表示每次送人训练的图像数量,当报错OOM时,需调小batch大小,但大小需要设置为2的幂次,最小为1
- imgsz:表示图像大小,会统一缩放成指定大小
- workers:指数据装载时cpu所使用的线程数,过高时会报错:[WinError 1455] 页面文件太小,无法完成操作,此时就只能将default调成0了。
代码训练
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO(r'ultralytics/cfg/models/11/yolo11-seg.yaml')
model.train(data=r'data.yaml',
imgsz=640,
epochs=100,
single_cls=True,
batch=16,
workers=10,
device='0',
)
训练情况:
模型验证
命令验证
yolo task=segment mode=val model=runs/segment/train/best.pt data=data.yaml device=0
在验证阶段,mode模式为验证,mode=val
,模型使用训练完成的权重文件,第一次训练完存放在:runs/segment/train/best.pt
,best.pt
就是训练完成后的最佳权重。
当然也需要指定数据集data=data.yaml
和所用的设备device=0
,和训练时一致。也可以添加batch、imgsz
,含义和训练时一致。
代码验证
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('runs/segment/train/best.pt')
model.val(data='data.yaml',
imgsz=640,
batch=16,
split='test',
workers=10,
device='0',
)
模型推理
命令推理
yolo task=segment mode=predict model=runs/segment/train/best.pt source=inference device=0
在推理阶段,mode模式为预测,mode= predict
,模型使用训练完成的权重文件:runs/segment/train/best.pt
,source表示需要预测的图像文件路径,inference中存放了准备预测的图像。
代码推理
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('runs/segment/train/best.pt')
model.predict(source='inference',
imgsz=640,
device='0',
)
总结
以上就是YOLOv11训练自己数据集的全部过程啦,欢迎大家在评论区交流~
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进