语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)


前言

提示:本文是YOLOv11的分割模型训练自己数据集的记录教程,需要大家在本地已配置好CUDA,cuDNN等环境,没配置的小伙伴可以查看我的往期博客:在Windows10上配置CUDA环境教程

2024年9月30日,YOLOv11Ultralytics最新发布的计算机视觉模型。支持多种任务,包括目标检测、实例分割、图像分类、姿态估计、有向目标检测以及物体跟踪等,本文主要讲述其分割任务的模型搭建训练流程。

在这里插入图片描述

在这里插入图片描述

代码地址:https://github.com/ultralytics/ultralytics

在这里插入图片描述


一、环境搭建

在配置好CUDA环境,并且获取到YOLOv11源码后,建议新建一个虚拟环境专门用于YOLOv11模型的训练。将YOLOv11加载到环境后,安装剩余的包,连接镜像,安装更快一些。

pip install ...

二、构建数据集

YOLOv11模型的训练需要原图像及对应的YOLO格式标签,还未制作标签的可以参考我这篇文章:Labelme安装与使用教程。注意labelme的标签是json格式的,这在训练前需要将json转成yolo的txt格式,链接里提供了相关的转换代码。

将原本数据集按照8:1:1的比例划分成训练集、验证集和测试集三类,划分代码如下,注意改成自己的文件路径。我的原始数据存放在/root/ultralytics-main/data,images里面包含全部图像,newLabel中包含打好的标签。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

	0 0.5655737704918032 0.460093896713615 0.5655737704918032 0.49765258215962443 0.5737704918032787 0.5352112676056338 0.5819672131147541 0.5915492957746479 0.5922131147540983 0.5821596244131455 0.5840163934426229 0.5305164319248826 0.5778688524590164 0.48826291079812206
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
 
# 原始路径
image_original_path = "data/images/"
label_original_path = "data/newLabel/"
 
cur_path = os.getcwd()
#cur_path = 'D:/image_denoising_test/denoise/'
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")
 
# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")
 
# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")
 
# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")
 
train_percent = 0.8
val_percent = 0.1
test_percent = 0.1
 
 
def del_file(path):
    for i in os.listdir(path):
        file_data = path + "\\" + i
        os.remove(file_data)
 
 
def mkdir():
    if not os.path.exists(train_image_path):
        os.makedirs(train_image_path)
    else:
        del_file(train_image_path)
    if not os.path.exists(train_label_path):
        os.makedirs(train_label_path)
    else:
        del_file(train_label_path)
 
    if not os.path.exists(val_image_path):
        os.makedirs(val_image_path)
    else:
        del_file(val_image_path)
    if not os.path.exists(val_label_path):
        os.makedirs(val_label_path)
    else:
        del_file(val_label_path)
 
    if not os.path.exists(test_image_path):
        os.makedirs(test_image_path)
    else:
        del_file(test_image_path)
    if not os.path.exists(test_label_path):
        os.makedirs(test_label_path)
    else:
        del_file(test_label_path)
 
 
def clearfile():
    if os.path.exists(list_train):
        os.remove(list_train)
    if os.path.exists(list_val):
        os.remove(list_val)
    if os.path.exists(list_test):
        os.remove(list_test)
 
 
def main():
    mkdir()
    clearfile()
 
    file_train = open(list_train, 'w')
    file_val = open(list_val, 'w')
    file_test = open(list_test, 'w')
 
    total_txt = os.listdir(label_original_path)
    num_txt = len(total_txt)
    list_all_txt = range(num_txt)
 
    num_train = int(num_txt * train_percent)
    num_val = int(num_txt * val_percent)
    num_test = num_txt - num_train - num_val
 
    train = random.sample(list_all_txt, num_train)
    # train从list_all_txt取出num_train个元素
    # 所以list_all_txt列表只剩下了这些元素
    val_test = [i for i in list_all_txt if not i in train]
    # 再从val_test取出num_val个元素,val_test剩下的元素就是test
    val = random.sample(val_test, num_val)
 
    print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
    for i in list_all_txt:
        name = total_txt[i][:-4]
 
        srcImage = image_original_path + name + '.jpg'
        srcLabel = label_original_path + name + ".txt"
 
        if i in train:
            dst_train_Image = train_image_path + name + '.jpg'
            dst_train_Label = train_label_path + name + '.txt'
            shutil.copyfile(srcImage, dst_train_Image)
            shutil.copyfile(srcLabel, dst_train_Label)
            file_train.write(dst_train_Image + '\n')
        elif i in val:
            dst_val_Image = val_image_path + name + '.jpg'
            dst_val_Label = val_label_path + name + '.txt'
            shutil.copyfile(srcImage, dst_val_Image)
            shutil.copyfile(srcLabel, dst_val_Label)
            file_val.write(dst_val_Image + '\n')
        else:
            dst_test_Image = test_image_path + name + '.jpg'
            dst_test_Label = test_label_path + name + '.txt'
            shutil.copyfile(srcImage, dst_test_Image)
            shutil.copyfile(srcLabel, dst_test_Label)
            file_test.write(dst_test_Image + '\n')
 
    file_train.close()
    file_val.close()
    file_test.close()
 
 
if __name__ == "__main__":
    main()

划分完成后将会在datasets文件夹下生成划分好的文件,其中images为划分后的图像文件,里面包含用于trainvaltest的图像,已经划分完成;

labels文件夹中包含划分后的标签文件,已经划分完成,里面包含用于trainvaltest的标签;train.txtval.txttest.txt中记录了各自的图像路径。

在这里插入图片描述

在这里插入图片描述

在训练过程中,也是主要使用这三个txt文件进行数据的索引。

三、修改配置文件

①数据集文件配置

数据集划分完成后,在根目录下新建data.yaml文件,即data.yaml,用于指明数据集路径和类别,我这边只有一个类别,只留了一个,多类别的在name内加上类别名即可。data.yaml中的内容为:

path: ../datasets/images  # 数据集所在路径
train: train  # 数据集路径下的train.txt
val: val  # 数据集路径下的val.txt
test: test  # 数据集路径下的test.txt

# Classes
names:
  0: bubbeplume


在这里插入图片描述

②模型文件配置

ultralytics/cfg/models/11文件夹下存放的是YOLOv11分割模型的各个版本的模型配置文件,检测的类别是coco数据的80类。在训练自己数据集的时候,只需要将其中的类别数修改成自己的大小。此处以yolo11-seg.yaml文件中的模型为例,将 nc: 1 # number of classes 修改类别数 修改成自己的类别数,如下:

在这里插入图片描述

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n-seg.yaml' will call yolo11-seg.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
  m: [0.50, 1.00, 512] # summary: 445 layers, 22420896 parameters, 22420880 gradients, 123.9 GFLOPs
  l: [1.00, 1.00, 512] # summary: 667 layers, 27678368 parameters, 27678352 gradients, 143.0 GFLOPs
  x: [1.00, 1.50, 512] # summary: 667 layers, 62142656 parameters, 62142640 gradients, 320.2 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)



修改完成后,模型文件就配置好啦。

四、模型训练和测试

YOLOv11训练可使用命令或者代码进行运行,在训练过程中使用的具体的参数信息可在ultralytics/cfg/default.yaml路径下找到。

首先需要将default.yaml中的task设置成segment

模型训练

命令训练

打开终端,输入命令

yolo task=segment mode=train model=ultralytics/cfg/models/11/yolo11-seg.yaml data=data.yaml batch=32 epochs=300 imgsz=640 workers=10 device=0
  • task:表示任务为目标分割,可选detect, segment,classify
  • mode:表示模式,可选train,val,predict,export
  • model:表示使用的模型,这里我就是使用的刚刚新建的yolov8-mask.yaml
  • data:表示训练的图像文件,
  • device:表示是否使用GPU进行训练,可选0,1,2…或者cpu
  • epoch:表示训练的轮次
  • batch:表示每次送人训练的图像数量,当报错OOM时,需调小batch大小,但大小需要设置为2的幂次,最小为1
  • imgsz:表示图像大小,会统一缩放成指定大小
  • workers:指数据装载时cpu所使用的线程数,过高时会报错:[WinError 1455] 页面文件太小,无法完成操作,此时就只能将default调成0了。

代码训练

from ultralytics import YOLO
 
if __name__ == '__main__':

    model = YOLO(r'ultralytics/cfg/models/11/yolo11-seg.yaml')  
    model.train(data=r'data.yaml',
                imgsz=640,
                epochs=100,
                single_cls=True,  
                batch=16,
                workers=10,
                device='0',
                )

训练情况:

在这里插入图片描述
在这里插入图片描述

模型验证

命令验证

yolo task=segment mode=val model=runs/segment/train/best.pt data=data.yaml device=0

在验证阶段,mode模式为验证,mode=val,模型使用训练完成的权重文件,第一次训练完存放在:runs/segment/train/best.ptbest.pt就是训练完成后的最佳权重。

当然也需要指定数据集data=data.yaml和所用的设备device=0,和训练时一致。也可以添加batch、imgsz,含义和训练时一致。

代码验证

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
 
if __name__ == '__main__':
    model = YOLO('runs/segment/train/best.pt')
    model.val(data='data.yaml',
                imgsz=640,
                batch=16,
                split='test',
                workers=10,
                device='0',
                )

模型推理

命令推理

yolo task=segment mode=predict model=runs/segment/train/best.pt source=inference  device=0

在推理阶段,mode模式为预测,mode= predict,模型使用训练完成的权重文件:runs/segment/train/best.ptsource表示需要预测的图像文件路径,inference中存放了准备预测的图像

代码推理

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
 
if __name__ == '__main__':
    model = YOLO('runs/segment/train/best.pt')
    model.predict(source='inference',
                imgsz=640,
                device='0',
                )


总结

以上就是YOLOv11训练自己数据集的全部过程啦,欢迎大家在评论区交流~

专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### 关于YOLOv11实例分割的功能 目前可获得的信息主要集中在YOLO系列较早版本如YOLOv5以及更新迭代后的YOLOv7和YOLOv8上关于实例分割的应用和发展情况[^1]。然而对于YOLOv11的具体细节特别是其实例分割功能,在现有资料中并没有直接提及。 考虑到YOLO架构的一贯发展路径,可以推测YOLOv11可能会继承并优化之前版本中的特性。例如,从YOLOv7开始引入了对人体姿态估计的支持,并进一步扩展到实例分割领域;而YOLOv8则提供了更便捷的方式让用户能够将自己的模型放置在指定目录下以便进行实例分割任务[^2]。 为了实现类似于YOLOv11这样的高级版网络下的实例分割操作,建议参考相近版本(比如YOLOv8)的做法来构建环境与准备数据集: #### 数据集准备 遵循官方指南创建自定义的数据集是非常重要的一步。这通常涉及到使用特定命令完成图像的自动标注工作,确保每张图片都配有对应的边界框和其他必要的元数据信息。以YOLOv8为例,可以通过执行如下Python脚本来进行预测阶段的操作,从而获取初步的结果用于后续调整或评估: ```python from ultralytics import YOLO model_path = "path_to_your_model" source_images_dir = "path_to_source_images" # 加载预训练好的模型权重 model = YOLO(model_path) results = model.predict(source=source_images_dir, save=True, imgsz=640) ``` 此段代码展示了如何加载一个已经训练完毕的YOLO模型并对一批测试图片做推理处理,同时保存带有标记结果的新副本至默认输出位置。 #### 验证标签准确性 无论采用哪个具体版本实施项目开发,始终要重视对输入样本及其关联标签之间匹配关系的确立。因为任何偏差都会直接影响到最后的学习效果乃至最终性能指标的好坏程度。因此有必要编写简单的检验程序确认转换过程无误,下面给出了一种简单的方法用来检查txt格式的目标描述文件是否符合预期标准[^4]: ```python import os def check_labels(image_folder, label_folder): image_files = set([os.path.splitext(f)[0] for f in os.listdir(image_folder)]) label_files = set([os.path.splitext(f)[0] for f in os.listdir(label_folder)]) missing_in_image = list(label_files - image_files) missing_in_label = list(image_files - label_files) if not (missing_in_image or missing_in_label): print("All labels match images.") else: print(f"Missing Images: {missing_in_image}") print(f"Missing Labels: {missing_in_label}") image_directory = 'your_image_directory' label_directory = 'your_label_directory' check_labels(image_directory, label_directory) ``` 上述函数接受两个参数分别指向存储原始照片和对应文本记录的位置,通过对比两者间ID编号是否存在差异进而判断整个集合内部结构是否一致可靠。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值