一、本文介绍
本文记录的是基于GhostNet V2的YOLOv8目标检测轻量化改进方法研究。在目前的研究中,基于轻量级卷积神经网络在建模长距离依赖方面的不足,引入自注意力机制虽能捕获全局信息,但在实际速度方面存在较大阻碍。GhostNet V2
提出了一种硬件友好的注意力机制(DFC attention),并基于此构建GhostNet V2
。本文利用其中的模块重新设计YOLOv8的骨干网络,使模型在降低模型大小的同时,赋予模型各阶段更大的感受野,提高模型性能。
模型 | 参数量 | 计算量 | 推理速度 |
---|---|---|---|
YOLOv8m | 25.8M | 79.1GFLOPs | 4.7ms |
Improved | 19.1M | 43.9GFLOPs | 3.8ms |
专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进