YOLOv8改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作

一、本文介绍

本文记录的是基于GhostNet V2的YOLOv8目标检测轻量化改进方法研究在目前的研究中,基于轻量级卷积神经网络在建模长距离依赖方面的不足,引入自注意力机制虽能捕获全局信息,但在实际速度方面存在较大阻碍GhostNet V2提出了一种硬件友好的注意力机制(DFC attention),并基于此构建GhostNet V2本文利用其中的模块重新设计YOLOv8的骨干网络,使模型在降低模型大小的同时,赋予模型各阶段更大的感受野,提高模型性能。

模型 参数量 计算量 推理速度
YOLOv8m 25.8M 79.1GFLOPs 4.7ms
Improved 19.1M 43.9GFLOPs 3.8ms

专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv8改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值